UAS for Large Area Surveying and Site Assessments

Andrew Milanes, PE, GISP

Es²

October 26, 2022

Introduction

- Advances in Unmanned Aerial Systems (UAS) technology have provided the ability to accurately survey and assess large areas with high precision and detail.
- ► This presentation will discuss the utilization of UAS for large area solid waste management, site investigations, and assessments.
- ► UAS case studies will be presented for landfill topography and volumetrics, phase 2 site assessments, and wetland vegetation assessments.

About Es²

- Established in 1996
- Corporate headquarters in Denham Springs, LA
- Registered engineering firm in TX, LA, MS, FL
- Provide a wide range of environmental, engineering, and geospatial services for industry, government, and private sector clients
- Two Certified FAA Part 107 Small UAS Pilots on staff
- Certified SBE, DBE
 - ► SBA 8(a)
 - ► LA Hudson
 - LADOTD DBE

Andrew Milanes, PE, GISP

- President and founding partner of Es²
- ▶ BS in Civil Engineering LSU (1992)
- ▶ MS in Geomatics Engineering & GIS UC Denver (2022)
- Registered professional engineer (TX, LA, MS, AL, FL)
- Certified GIS Professional (GISP)
- Pix4D Certified (UAS photogrammetry software)
- 25+ years surveying, mapping, and photogrammetry experience

Small UAS Regulations

Small Unmanned Aircraft Regulations

- Regulated by the Federal Aviation Administration (FAA)
- Applicable to Aircraft Under 55 lbs (small UAS)
- Two Options to Legally Fly Small UAS by the FAA:
 - Special Rule for Model Aircraft (Section 336)
 - > Small UAS Rule (Part 107), August 2016

FAA Small UAS Rule (Part 107)

- ▶ Fly for recreational OR commercial use
- Register your drone https://registermyuas.faa.gov
- Get a Remote Pilot Certificate from the FAA
- Fly a drone under 55 lbs.
- Fly within visual-line-of-sight*

* These rules are subject to waiver.

FAA Small UAS Rule (Part 107)

- Don't fly near other aircraft or over people*
- Don't fly in controlled airspace near airports without FAA permission*
- Fly only during daylight or civil twilight, at or below 400 feet*

^{*} These rules are subject to waiver.

FAA Small UAS Rule (Part 107) Revised April 2021

- Allows for flights at night, over people, and moving vehicles
- Waiver not required
- Must meet specific conditions
- Provisions for Remote ID
 - ► Fully integrate UAS into the National Airspace System

FAA Small UAS Rule (Part 107) Revised April 2021 Operations Over People or Moving Vehicles

- Risk-based approach
- Small UAS divided into 4 categories
 - ► Category 1 0.55 lbs or less and no exposed rotating parts
 - Category 2 >0.55 lbs, no exposed rotating parts that would lacerate human skin, and will not cause injury ≥11 foot-lbs of kinetic energy upon impact from a rigid object
 - Category 3 >0.55 lbs, no exposed rotating parts that would lacerate human skin, and will not cause injury ≥25 foot-lbs of kinetic energy upon impact from a rigid object
 - ► Category 4 does not meet requirements for 1-3; requires an FAA airworthiness certificate and flight manual

FAA Small UAS Rule (Part 107) Revised April 2021

Operations Over People					
	Category 1	Category 2	Category 3	Category 4	
Directly Participating	Allowed	Allowed	Allowed ²	Allowed	
Not Directly Participating	Allowed ¹	Allowed ¹	Must be on Notice ^{2,3}	Operating Limitations	

¹ Sustained flight over open-air assemblies prohibited, unless Remote ID compliant.

² Sustained flight over open-air assemblies prohibited.

³ Transit only, no sustained flight for open or non-restricted access sites.

FAA Small UAS Rule (Part 107) Revised April 2021

Operations Over Moving Vehicles					
	Category 1	Category 2	Category 3	Category 4	
Directly Participating	Allowed	Allowed	Allowed	Allowed	
Not Directly Participating	Must be on Notice ¹	Must be on Notice ¹	Must be on Notice ¹	Operating Limitations	

¹ Transit only, no sustained flight for open or non-restricted access sites.

FAA Small UAS Rule (Part 107) Revised April 2021 Night Operations

- Small UAS must have anti-collision lighting
- Visible for at least 3 miles
- Flash rate to avoid collision

FAA Small UAS Rule (Part 107) Revised April 2021 Remote ID

- Ability of a drone in flight to provide identification and location information
- ► Helps FAA, law enforcement, and other federal agencies locate the control station when a drone is flying in an unsafe manner or unauthorized location
- ▶ Drones without Remote ID will only be allowed to operate at FAA-recognized identification areas sponsored by community-based organizations or educational institutions.
- ► Compliance date: <u>September 16, 2023</u>

Don't be this person:

UAS Mapping Engineering / Surveying Laws Louisiana Professional Engineering and Land Surveying Board

- Surveying and mapping functions that must be performed by or under the responsible charge of either a professional engineer or professional land surveyor include:
 - Topographical surveys
 - Quantity and measurement surveys
 - Profiles and cross-sections
- Laws are the same no matter the data acquisition method

Types of Small UAS and Sensors

Types of Small UAS

Multi-Rotor

▶ 4 rotors (quadcopter) - most common

► 6 rotors (hexacopter)

▶ 8 rotors (octocopter)

Types of Small UAS

- Fixed-Wing
 - "Flying Wing" design
 - "Conventional Airframe" design

Types of Small UAS

- Vertical Take Off and Landing (VTOL)
 - Multi-rotor / fixed wing hybrid
 - Uses rotors for vertical take off and landing
 - > Transitions to fixed-wing mode for flight
 - ► Tail Sitter or Tilt Rotor

Comparison of Small UAS Types

Type	Pro	Con	
Multi-Rotor	Ease of use	Short flight times	
	VTOL and hover flight	Slow speed	
	Good camera control	Small area coverage	
	Can operate in a confined area		
	Larger payload		
	Long endurance	Launch and recovery needs additional space	
	Large area coverage	Harder to fly, more training needed	
	Fast flight speed	Small payload	
Fixed-Wing Hybrid	V/TOL III (III I	Not perfect at either hovering or forward	
	VTOL and hover flight	flight	
	Long endurance	Still in development	
	Medium payload		

- Prosumer aircraft equipped with non-interchangeable camera system
- RGB sensor (up to 1", 20MP)
- Fixed focal length lens (noninterchangeable)
- > 3-axis stabilized gimbal
- Good for general photography

- Digital SLR
- Full-frame RGB sensor (up to 42MP)
- Fixed focal length lens (interchangeable)
- > 3-axis stabilized gimbal
- Good for high-accuracy mapping

- Light Detection and Ranging (LiDAR)
- Detailed point cloud
- Captures fine details such as power lines
- Good for topographic mapping in vegetation

- Multispectral
- ▶ 5 Bands: Red, Green Blue, NIR, Red Edge
- Vegetation mapping
- Image classification
 - Land/water
 - Vegetation type
 - Vegetation health
- Calibrated sensors for repeatable results

Photogrammetry vs LiDAR

Photogrammetry:

- Large number of highresolution photos are captured over an area.
- Images overlap such that the same point on the ground is visible in multiple photos and from different vantage points.
- Photogrammetry uses these multiple vantage points in images to generate a 3D map.

Photogrammetry vs LiDAR

LiDAR:

- Uses oscillating mirrors to send out laser pulses in many directions to generate a "sheet" of light as the drone moves forward.
- Through measuring the timing and intensity of the returning pulses, it can provide readings of the terrain and of points on the ground.

Terrain Modeling Underneath Vegetation

- In some specific situations, a terrain model below vegetation is needed as an output.
- Photogrammetry can be used to effectively create 3D models in areas with sparse vegetation.
- Higher cost and complexity of LIDAR may be worth it when dealing with areas of relatively dense vegetation.
- LiDAR light pulses can filter through small openings between the leaves and reach the ground below.

<u>Note:</u> LIDAR pulses don't go through vegetation canopy; they go around it. I.e., mapping terrain under very dense vegetation is still not possible, even with LIDAR.

Cost Factors

- Project size (acres)
 - Multi-rotor up to ~300 acres
- Vegetation present?
 - LiDAR required for bare ground of vegetated site
- Required accuracy
- Existing survey control monuments present?
- Deliverables
 - Raw data
 - Processed data
 - Web maps
 - Hardcopy prints

Additional Challenges for Large Projects

- Multiple takeoff/landing locations
- Maintain visual line of site of UAS
- Data storage
 - > ~35gb per 100ac
- Processing time
- Computer hardware / software limitations
- Data dissemination

Case Studies

Case Study Waste Management Woodside Landfill

- RDF disposal facility in Walker, LA
- Opened in 1987 with a projected life remaining of 36 years
- Facility acreage: 527 ac
- Topographic data obtained annually using manned aircraft photogrammetry
- Engineer needed more frequent data for air space calculations
- Flight area varied depending on need
 - Entire landfill
 - New cell construction
 - Hurricane debris green waste processing area

Case Study Waste Management Woodside Landfill

- Entire Landfill
 - ► Two flights
 - ▶ 400 feet above ground level
 - > 3,500 images
 - ▶ 1.5 hours flight time
- WingtraOne UAS
 - VTOL tailsitter
 - Sony RX1RII 42mp DSLR camera
 - Ground sample distance 0.05 feet
 - PPK GNSS

Case Study Waste Management Woodside Landfill

- 35 existing control monuments used as check points
- No additional ground surveying performed
- Pix4DMapper utilized for photogrammetry
 - Orthophoto mosaic
 - Digital terrain model
 - ▶ 3-inch contour lines
- Vertical Accuracy: 0.12 feet
- Data Delivery: 1 week
- ▶ Data also delivered via <u>web application</u>

Case Study Site Assessments - Port of New Orleans

- Port NOLA contracted ERM to conduct site assessments
- Two properties located in New Orleans East
- ERM contracted Es² to conduct UAS flights to aid in the site assessments
- Properties were difficult to access onfoot
- Utilize UAS imagery for a first-look

Case Study Port NOLA Site Assessments

- Within Lakefront Airport Class D Airspace
- Restricted to 200 feet agl
- WingtraOne UAS
 - Sony RX1RII 42mp DSLR camera
 - > 2,200 images

Case Study Port NOLA Site Assessments

- Pix4DMapper utilized for photogrammetry
 - Orthophoto mosaics
- Esri File Geodatabase with point layer of individual photo locations and link to image
- Data Delivery: 1 week

Case Study Port NOLA Site Assessments

UAS_Geotag_Photos_AlmonasterAve_20210129 (1)

ERM_PortNOLA_AlmonasterAve_Flight_01_00070JPG

UAS Geotag Photos AlmonasterAve 20210129 - ERM PortNOLA AlmonasterAve Flight 01 00070, JF

ш		
	OBJECTID	69
200000000000000000000000000000000000000	Name	ERM_PortNOLA_AlmonasterAve_Flight_01_00070JPG
	DateTime	1/29/2021 11:13:25 AM
	Direction	163.695191
	East [ft]	3717621.688
	North [ft]	551932.607
	Elev [ft]	202.524
	Altitude [ft agl]	200
Ш	EDM DNOL	A AlA Flight 04 00070 IDC

RM PortNOLA AlmonasterAve Flight 01 00070.JPG

Case Study Wetland Vegetation Assessment Rockefeller Wildlife Refuge

- Marsh creation monitoring survey
- ▶ 107 acres
- Cameron Parish, LA
- Subcontractor to HDR
- UAS utilized to collect natural color and multispectral imagery for use in image classification

Case Study Wetland Vegetation Assessment Rockefeller Wildlife Refuge

- WingtraOne UAS
- Sony RX1RII 42mp DSLR camera
 - ▶ 400 ft agl
 - ▶ 0.6 in/px
- Micasense Altum multispectral sensor
 - RGB, NIR, RedEdge
 - > 315 ft agl
 - ▶ 1.6 in/px

Case Study Wetland Vegetation Assessment Rockefeller Wildlife Refuge

- Ten ground control targets for check points
- Pix4DMapper utilized for photogrammetry
 - Natural color orthophoto mosaic
 - 5-band multispectral reflectance map
- ► Horizontal accuracy: 0.08 ft
- Data Delivery: 1 week

Case Study Wetland Vegetation Assessment Rockefeller Wildlife Refuge

Case Study Wetland Vegetation Assessment Rockefeller Wildlife Refuge

Andrew Milanes, PE, GISP

1027 North Range Avenue Denham Springs, LA 70726 (225) 927-7171 amilanes@es2-inc.com

