Odor Control
Tracking the Source of Odors

Lee J. Lemond
Louisiana Department of Environmental Quality
Emergency Response – Southeast Region
Introduction

* Offsite odors are one the more noticeable effects facilities have on nearby communities

* Odors can be attributed to:
 1. Normal Operations
 2. Excess Emissions
 3. Incidents
Odor Causes

1. Normal Operations
 * Odorous product or feedstock

2. Excess Emissions
 * Fugitive Emissions
 * Turnaround
 * Poor Housekeeping Practices

3. Incidents
 * Spills
 * Releases
 * Poorly Maintained or Insufficient Control Equipment
Community Impact of Odors

* In 2014, LDEQ has received ~503 odor complaints to date
* LDEQInspectors investigate every complaint received
* When SPOC receives an unusual number of odor complaints, LDEQ Emergency Response (ER) will investigate
Unpermitted air emissions or incidents
 * LAC 33:III.501.C.4 – “The source shall operate in accordance with all terms and conditions of the permit.”

Nuisance Odors
 * LAC 33:III.2901 – “Limit on Odorous Substances at or beyond Property Lines”
 * Various regulations prohibit “a nuisance, or a danger to public health and safety”

City Ordinances
 * Odor ordinances
 * Operating licenses
Identifying the Source of Odors

<table>
<thead>
<tr>
<th>Factors</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complaint Details</td>
<td>Specific Location & Times</td>
</tr>
<tr>
<td>Weather Conditions</td>
<td>Wind Speed, Direction & Cloud Cover</td>
</tr>
<tr>
<td>Duration</td>
<td>Constant or Transient</td>
</tr>
<tr>
<td>Intensity</td>
<td>Local or Area</td>
</tr>
<tr>
<td>Odor Characteristics</td>
<td>What does it smell like? Used to identify potential compounds</td>
</tr>
<tr>
<td>Industries</td>
<td>What is nearby? Incidents in the area? What type of industries? Potential for odors to travel offsite?</td>
</tr>
<tr>
<td>Air Monitoring & Analysis</td>
<td>What compounds are detected?</td>
</tr>
</tbody>
</table>
Odor Wheels (Compost)

From Rosenfeld, et. al
Water Science & Technology Vol 55 No 5
pp 345–357
Types of Air Monitoring Equipment

- “Handheld” Monitors
 - 5 Gas Meter, Jerome Meter
- Canister Samples
 - Grab Samples
 - Regulated Samples
- Mobile Air Monitoring Lab (MAML)
- LDEQ Ambient Air Station
Monitoring Considerations

* Impact to the Environment & Human Health
* Type of Analysis (Compounds Present)
* Equipment Detection Limits
* Mobility
* Location
* Duration
* Cost
On 4/3/13 Orleans, Jefferson, St. Bernard & Plaquemines Parish EOCs received >100 odor complaints beginning at 1:30am

LDEQ ER & USCG Initiated Investigation
- Facilities, River Traffic, Reported Incidents
- Followed the Odor
- Variable winds, max 25 mph and rain made it difficult to isolate origin of the odor
- Sulfur Odor very present and detected by DEQ
- Air monitoring by DEQ ER throughout response showed no detections for VOCs, SO₂, H₂S within community and where noticeable odors were observed
Chalmette Refinery
WTF Flare Line Spill

- Chalmette Refinery discovered a spill from a pipeline leak at ~7am
- Leak was secured at 7:45am
- Chalmette Refinery notified LDEQ of a waste water spill at ~8am
- Simultaneously Chalmette Refinery was flaring a large amount of SO$_2$
Spill was determined to be flare condensate.

Analysis showed released material was below Reportable Quantity (RQ) for H$_2$S and Benzene.

Contained 245ppm of mercaptans.

- Highly odorous reduced sulfur chemical used in natural gas as an odorizer (~3ppm)
Odorous Reduced Sulfur Chemicals

<table>
<thead>
<tr>
<th>Compound</th>
<th>CAS No.</th>
<th>Reporting Limit PPBV</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen Sulfide</td>
<td>7783-06-4</td>
<td>5.00</td>
<td>Rotten eggs</td>
</tr>
<tr>
<td>Carbonyl Sulfide</td>
<td>463-58-1</td>
<td>5.00</td>
<td>Pungent</td>
</tr>
<tr>
<td>Methyl Mercaptan</td>
<td>74-93-1</td>
<td>5.00</td>
<td>Rotten cabbage</td>
</tr>
<tr>
<td>Ethyl Mercaptan</td>
<td>75-08-1</td>
<td>5.00</td>
<td>Rotten cabbage</td>
</tr>
<tr>
<td>Dimethyl Sulfide</td>
<td>75-18-3</td>
<td>5.00</td>
<td>Decayed vegetables</td>
</tr>
<tr>
<td>Carbon Disulfide</td>
<td>75-15-0</td>
<td>2.50</td>
<td>Vegetable sulfide</td>
</tr>
<tr>
<td>Isopropyl Mercaptan</td>
<td>75-33-2</td>
<td>5.00</td>
<td>Skunk</td>
</tr>
<tr>
<td>tert-Butyl Mercaptan</td>
<td>75-66-1</td>
<td>5.00</td>
<td>Skunk</td>
</tr>
<tr>
<td>n-Propyl Mercaptan</td>
<td>107-03-9</td>
<td>5.00</td>
<td>Cabbage</td>
</tr>
<tr>
<td>Ethyl Methyl Sulfide</td>
<td>624-89-5</td>
<td>5.00</td>
<td>Sulfurous, garlic</td>
</tr>
<tr>
<td>Thiophene</td>
<td>110-02-1</td>
<td>5.00</td>
<td>Sweet</td>
</tr>
<tr>
<td>Isobutyl Mercaptan</td>
<td>513-44-0</td>
<td>5.00</td>
<td>Skunk</td>
</tr>
<tr>
<td>Diethyl Sulfide</td>
<td>352-93-2</td>
<td>5.00</td>
<td>Sharp, garlic</td>
</tr>
<tr>
<td>n-Butyl Mercaptan</td>
<td>109-79-5</td>
<td>5.00</td>
<td>Skunk</td>
</tr>
<tr>
<td>Dimethyl Disulfide</td>
<td>624-92-0</td>
<td>2.50</td>
<td>Putrid, decayed vegetables</td>
</tr>
<tr>
<td>3-Methylthiophene</td>
<td>616-44-4</td>
<td>5.00</td>
<td>Sharp, pungent</td>
</tr>
<tr>
<td>Tetrahydrothiophene</td>
<td>110-01-0</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>2,5-Dimethylthiophene</td>
<td>638-02-8</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>2-Ethylthiophene</td>
<td>872-55-9</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>Diethyl Disulfide</td>
<td>110-81-5</td>
<td>2.50</td>
<td>Rotten cabbage</td>
</tr>
<tr>
<td>Dimethyl Trisulfide</td>
<td>3658-80-8</td>
<td>2.50</td>
<td></td>
</tr>
</tbody>
</table>

- Source of many complaints received in LA
- Common with petroleum/hydrocarbon processing
- Odor threshold is below detection limit of most equipment
Detection Limits for Sulfur Compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>AreaRae</th>
<th>Jerome</th>
<th>MAML AA Analyzers</th>
<th>ASTM 5504-12</th>
<th>EPA TO-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2S</td>
<td>0.1 ppm (100 ppb)</td>
<td>4 ppb</td>
<td>0.4 ppb</td>
<td>5 ppb</td>
<td>NA</td>
</tr>
<tr>
<td>SO2</td>
<td>0.1 ppm (100 ppb)</td>
<td>NA</td>
<td>0.4 ppb</td>
<td>NA</td>
<td>3 ppb ^</td>
</tr>
<tr>
<td>VOC*</td>
<td>0.1 ppm (100 ppb)</td>
<td>NA</td>
<td>0.01 ppm **</td>
<td>NA</td>
<td>.2 - 25 ppb ***</td>
</tr>
</tbody>
</table>

*Benzene is included as VOCs, **detection limit is for NMOC, *** VOCs have varying detection limits in ppb range.
^ Detected as a TIC (Tentatively Identified Compound)
Odor Threshold vs Detection Limits
Reduced Sulfur Compounds

- Hydrogen Sulfide
- Methyl Mercaptan
- Ethyl Mercaptan
- Dimethyl Sulfide
- Isopropyl Mercaptan
- tert-Butyl Mercaptan
- n-Propyl Mercaptan
- n-Butyl Mercaptan
- Dimethyl Disulfide
- Dimethyl Trisulfide

ASTM 5504 Reporting Limit (ppbv)

Odor Threshold (ppbv)
Federal Exposure Guidelines for Sulfur Compounds

<table>
<thead>
<tr>
<th>CDC ATSDR MRLs</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*CDC ATSDR MRL</td>
<td>HYDROGEN SULFIDE</td>
<td>Inh.</td>
<td>Resp.</td>
<td>Acute</td>
</tr>
<tr>
<td>*CDC ATSDR MRL</td>
<td>HYDROGEN SULFIDE</td>
<td>Inh.</td>
<td>Resp.</td>
<td>Int.</td>
</tr>
<tr>
<td>*CDC ATSDR MRL</td>
<td>SULFUR DIOXIDE</td>
<td>Inh.</td>
<td>Resp.</td>
<td>Acute</td>
</tr>
</tbody>
</table>

*Exposure Durations:
- MRLs are derived for acute (1 - 14 days)
- Intermediate (>14 - 364 days)
- Chronic (365 days and longer)

EPA NAAQS = Federal Ambient Air Quality Regulations

CDC ASTDR MRLs = Federal Exposure Guidelines

<table>
<thead>
<tr>
<th>Sulfur Dioxide</th>
<th>Time</th>
<th>Level</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>primary</td>
<td>1-hour</td>
<td>75 ppb</td>
<td>99th percentile of 1-hour daily maximum concentrations, averaged over 3 years</td>
</tr>
<tr>
<td>secondary</td>
<td>3-hour</td>
<td>0.5 ppm</td>
<td>Not to be exceeded more than once per year</td>
</tr>
</tbody>
</table>

No EPA NAAQS for H2S
Hurricane Isaac flooded the area with up to 12 feet of water.

Parish officials brought in additional temporary drainage pumps.

On 9/11/12 workers at temporary pumps station experienced nausea, headache, eye and respiratory inflammation, and strong offensive odors.

LDEQ ER and State Police responded.

As pumps were turned off, H_2S readings declined.

Incident raised awareness of previously unknown hazard.
Difficulties During Odor Investigations

- “Normal” Odor vs Nuisance Odor
- Subjective
- Vague complaints from citizens
- Vague incident reports from industry
- Difficult to quantify
- Difficult to determine source
- Often not from a permitted emission point
- Multiple contiguous facilities
Communicating with the Community During Odor Incidents

Lessons Learned

* Problems
 * Louisiana has many neighborhoods and major metropolitan areas in close proximity to industrial activities
 * Odors commonly misperceived to be indicative of toxic chemical releases
 * Potential health effects not understood by or communicated to impacted communities

* Solutions
 * Up to date, clear communication of information
 * Hotline setup by Responsible Party (RP), press releases
 * Additional community monitoring
 * Data compared to exposure guidelines
503 complaints have been received by LDEQ 1/1/2014 - 10/28/2014

Need for better incident reporting and communication with DEQ regional office

Air monitoring data is the only quantitative information available to satisfy community concerns
Questions?

Lee J. Lemond
Louisiana Department of Environmental Quality
Emergency Response – Southeast Region
Lee.Lemond@la.gov
(225) 978-7573