Flare Steam-Assist Optimization

Judy M. Bigon
ExxonMobil Downstream/Chemicals SSH&E
October 31, 2012
Louisiana A&WMA Fall Conference
Overview

• Case for action
• Flare steam-assist optimization
• Plant pilot study
• Early results and learnings
Case for Action

• New, credible flare test results show excess steam can adversely affect combustion efficiency

• Agencies & flare experts working to translate new data into monitoring/control requirements

• Rule development will take time

• New information cannot be ignored
Case for Action

• Industry trades informing the regulatory process
 – Safety cannot be compromised
 – Potential $multi-billion cost across industries
 – Large flaring reductions must be considered

• ExxonMobil proactively taking action
 – Accounting for new information in flare operations
 – Supports continuing objective to minimize flare emissions
 – Learnings used to inform the regulatory process
Steam Optimization Basics

• Focus on optimizing steam usage
• Focus on improvements using existing facilities
 – Procedural
 ➢ Education, procedure updates, training
 – Automation
 ➢ Instrumentation, Distributed Control Systems
Steam Optimization Basics

• Program objective is to move as far “to the right” as possible using existing facilities and improved procedures
Steam Optimization Overview

• Goals
 – Evaluate flare steam usage while meeting prevailing regulatory requirements
 – Identify enhancements to flare procedures to minimize steam usage

• Desired Outcomes
 – Establish steam operating envelope that results in a smokeless visible flame
 ➢ Presence of visible flame indicates high CE
 – Develop tools that will help achieve consistent operation within the envelope
Plant Application - Pilot Study

• Organize Implementation Team
 – Emissions control technology leader
 – Environmental engineer
 – Combustion expert
 – Federal air regulatory advisor
 – Plant personnel
 ➢ Operations, applications, SHE
Plant Application - Pilot Study

• Preparations and Data Collection
 – Identified sources and typical/lowest rates of flare flows
 – Characterized relevant flare facilities
 – Compared data against installed equipment
 – Identified & addressed items before testing
 ➢ Calibration of monitoring equipment
 ➢ Maintenance/repair items
Plant Application - Pilot Study

• Preparations and Data Collection
 – Determined minimum required steam rate based on the higher of:
 ➢ Equipment, operational, or configuration requirements
 ➢ Minimum steam flow rate that is “controllable” and “measureable”
 – If possible, created DCS calculated tags based on existing instrumentation
 – Ensured understanding of desired flame appearance and environmental constraints
Plant Application - Pilot Study

Unacceptable

Regulations do not allow visible emissions (smoke) for more than 5 minutes in a 2-hour period.

Flare at “incipient smoke point” - transient wisps of smoke. **Maximum operating window.**

Flare with visible, slightly “marbled” flame.

Flare with visible flame with some regions of transparency.

Flare with small, visible, transparent flame. **Minimum operating window.**

Flare with steam plume and no visible flame. Steam could be quenching the flame.

Unacceptable

Visual Cue Card
Plant Application - Pilot Study

• Evaluation Approach
 – Performed field trials to determine flare operating envelope at typical flare gas rates

 ➢ Established operating envelope as “incipient smoke point” to an “intermittently visible flame”

 ➢ Adjusted steam rate along this continuum and tested automated steam controls, where available

 ➢ Assessed different flare rates and “feeds”
 ▪ Base load, cases with added gas, cases with varying compositions

 ➢ Used instrumented parameters where available

 – Recorded information along full test continuum
Early Results

• Identified limiting constraints to further optimizing steam rate with existing facilities

• Showed that existing infrastructure provides options for automatic steam control
 – Steam-to-flare gas ratio (SFR) control possible for most flares
 – Combustion Zone Net Heating Value (CZNHV) control possible on some flares
 – Operating window between smoking and “no visible flame” can be very narrow
Early Results

• Establishing operating envelope for steam usage on all continuous flares
 – Goal: control to visible smokeless flame

• Developing & implementing flare-specific operating procedures

• Training operators & setting expectations
Early Learnings

- Every flare system different, requiring unique and customized control strategy
 - When objective clear, plant personnel find most reliable/cost-effective means to achieve it
 - Although “returns” early, some flares may be able to achieve objective with no new cap. investment

- Accuracy/range of existing meters/analyzers for flare gas & steam flow rates are important elements of robust/reliable control scheme
 - Accurate measurement of flare gas rate and steam rate at low rates is challenging
Early Learnings

• **Continuous heating value (BTU) analyzer may be necessary**
 – Depends on variability of flared gas heating value and regulatory requirements
 – Control using BTU analyzer & CZNHV may be necessary for flares with significant variation in flare gas rate

• **Steam valve position can be sufficient to determine SFR or CZNHV operating range for some flares**
Early Learnings

• Operator/site training critical to improvement
 – Operators need to understand risks and consequences of too much or too little steam

• Objective of maintaining visible flame easily understood by everyone in organization

• Communication with community & neighbors about possible changes to flare appearance is part of education process
 – Some agencies engaged in this education
Questions??

Contact Information: judy.m.bigon@exxonmobil.com/281-360-6598