The 3 N’s of Air

Basic Concepts of NSPS, NESHAPs and NSR

Diane H. Leche
Air Permit Coordinator
ExxonMobil Baton Rouge

La. Section A&WMA Fall Conference, October 2011
Basic Concepts of NSPS, NESHAPs and NSR

- Objective: provide a framework for how to think about these regulations
- Emphasis is on applicability and major requirements
- This will not make you an expert
- These rules are subject to interpretation
- Get to know the resources in your company for interpretation guidance
- Let’s presume you are an environmental staffer at a major stationary source. How do you evaluate a change that you must approve?
Basic Concepts of NSPS

• NSPS – New Source Performance Standards
 – Authorized in the 1970 Clean Air Act Amendments
 – Sets control technology standards for emission units that emit criteria pollutants
 – Tip: It doesn’t just regulate new sources – regulates new sources AND “existing facilities” that become “affected facilities” via “reconstruction” or “modification”
 – Tip: A new standard does not have to be final for it to apply to a change, it only has to be proposed.
 – Structure: 40 CFR Part 60
 • Subpart A – General Provisions – recordkeeping, reporting, definitions, some control requirements (i.e. flares)
 • Subpart B – SIP requirements for states
 • Subparts C and on – requirements for specific types of emission units
Basic Concepts of NSPS, cont’d

• So what makes an emissions unit subject to NSPS?
 – You build a new facility, or reconstruct, or modify an existing facility such that it becomes an affected facility
 • Tip: watch for exemptions based on size, vapor pressure, etc.
 • Tip: watch for overlap provisions with NESHAPs
 • Tip: watch for changes in what is considered an existing facility as the NSPSs are updated
 – You build a brand-new facility regulated by the Subpart
 – You trigger “reconstruction” – see 40 CFR 60.15
 • Your replace components on an existing facility, and the work costs more than 50% of the cost of constructing a comparable entirely new facility (today’s dollars)
 • Common example: Kb reconstruction trigger on an existing hydrocarbon storage tank
 • Tip: some Subparts have specific provisions that define “reconstruction” differently
You trigger “modification” – see 40 CFR 60.14

- You increase production rate; it increases the emission rate to the atmosphere and it is a capital expenditure
- Emission rate to the atmosphere – short term emissions, not tons per year
- Is it a capital expenditure? Does the cost exceed the following formula? (see definitions in 40 CFR 60.2)

\[\text{Trigger} = \text{Annual asset guideline repair percentage} \times \text{the existing facilities cost basis} \]

The annual asset guideline is an IRS figure that states the typical % expenditure in a given year for a given source category – i.e. for SOCMI – 12%, for Petroleum Refineries - 7%, for Pulp and Paper – 10%

The existing facilities cost basis is the capital dollars it cost to build the facility originally, and the added capital over the years.

Tip: this is historical cost, not today’s dollars!
Basic Concepts of NSPS, cont’d

• The project will trigger NSPS, now what?
 – In Louisiana, you will need some type of permit action
 • Request for a reconstruction - LAC 33:III:501.C.1
 • If it is a new or modified facility, it is a Title I modification
 – Minimum of 2 months for EPA and public notice
 – See LAC 33:III:502 definition
 • For emergency engines, can use a Regulatory Permit
 – Ensure the project installer puts in the correct emission control requirements
 – Specific notifications for startup, performance test, etc.
 – Monitoring, recordkeeping and reporting
Basic Concepts of NESHAPs

• You completed the NSPS evaluation for the change, are you finished?
 No, there is lots more to do!

• Evaluate the change for NESHAPs – National Emission Standards for Hazardous Air Pollutants (aka MACT)

• Background
 – Authorized by 1990 Clean Air Act Amendments
 – Structure: 40 CFR Part 61 or Part 63
 • Part 61 is by pollutant: vinyl chloride, benzene
 • Part 63 is by source category: Ethylene plants, Petroleum Refineries (I and II), Pulp and Paper, Polymers and Resins, HON (Hazardous Org. NESHAPs), MON (Misc. Org. NESHAPs)

• Requirements
 – Requires MACT (Maximum Achievable Control Technology) for source categories that emit HAPs (Hazardous Air Pollutants) (a few are by pollutant)
 – For existing sources, plants were given 3 years to meet the standards. Different than NSPS for existing sources, which must trigger reconstruction or modification to be subject.
 – So, your facility should already be in compliance with the applicable NESHAPs. Notable exception is Combustion MACT which continues to be debated.
 – But, a change may trigger MACT applicability when it did not apply before, or it may impact the compliance method.
Basic Concepts of NSR

• Not done yet!
• New Source Review
 – Current version of regulations effective in 1980
 – Regulates construction of new and modified emission units at major stationary sources (just like NSPS – don’t let the name fool you!)
 – Complex regulation that has led to multiple court cases, enforcement actions and consent decrees
 – Codified in CFRs, but most of your reference information will come from the state rules, state permit procedures manual, EPA opinions on similar situations, and training classes
 – You must know the resource for guidance within your company and ensure you follow your company’s policies
 – Tip: some times you will hear a comment “the project does not need a permit” when what is meant is that major NSR is not required, but the project still requires a minor NSR permit before construction.
Basic Concepts of NSR – cont’d

- What triggers the need for an NSR permit?
 - A permit is required for a “physical modification or change in the method of operation that increases emissions”
 - Note that NSR regulates annual tons per year emissions vs. NSPS modifications which address peak hourly emissions.
 - Seems pretty straightforward but it’s not
 - Some of the non-environmental folks you deal with will call it illogical

- The biggest “you gotta be kidding” moment you will have as you work with project staff: a pre-construction permit is needed if you are increasing emissions on a given source even if you don’t need to increase the permit limit

- Example:
 - A unit has a process heater permitted for 100 MBTU/hr capacity. But the heater can only produce 85 MBTU/hr. A project is proposed to add additional burners and increase the capacity to 90 MBTU/hr. After the project, actual emissions will increase, since the heat duty is the current limit on the process unit.
 - Does this project require a pre-construction permit? Yes.
Important Concepts

- Major Stationary Source – building, structure, facility or installation that emits a regulated pollutant above a stated threshold.
 - Threshold is either 100 or 250 tons per year in attainment areas.
 - Includes all operations that are 1) adjacent or contiguous, 2) under common control and 3) under the same SIC code
 - Also includes support facilities
- What triggers the need for an NSR analysis? A “Physical Modification or Change in the Method of Operation”

Exemptions

- Routine Maintenance, Replacement and Repair – use “Detroit Edison” factors if necessary – nature, extent, purpose, frequency, cost
- Increase in hours of operation
- Change in fuel or raw material
- For a non-exempt change:
 - Is there an actual emissions increase?
 - Will actual emissions be higher than the highest 24 consecutive months in the last 10 years?
 - If yes to both, the project is subject to NSR.
You decide a project is subject to NSR. Now you need to calculate the emissions increase.

Sample project: increase capacity of a distillation tower.
- Add burners to the existing process heater
- New piping to bring in another feedstock
- Retray the tower
- Need more steam for the extra production (but no physical change to the boiler)

Emissions increase
- Furnace: increase is future potential/permitted emissions less highest 24 consecutive months actual emissions – “Actual-to-potential” – or can use reform
- New piping: new sources: pumps, valves, connectors, etc.
- More steam: change caused by the production increase – based on anticipated increased steam demand – “Actual-to-actual”
- Add all these up = Emissions increase
Basic Concepts of NSR – cont’d

- Presume this project will happen in an attainment area. Compare the emission increase to the PSD trigger – Prevention of Significant Deterioration.

<table>
<thead>
<tr>
<th>Pollutant (tpy)</th>
<th>NOx</th>
<th>SO₂</th>
<th>CO</th>
<th>VOC</th>
<th>PM 10/2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Emissions Increase</td>
<td>45</td>
<td>6</td>
<td>110</td>
<td>5</td>
<td>5/3</td>
</tr>
<tr>
<td>PSD threshold</td>
<td>40</td>
<td>40</td>
<td>100</td>
<td>40</td>
<td>15/10</td>
</tr>
</tbody>
</table>

- So the project is a minor mod for SO₂, VOC and PM. Need to see if we can “net out” for NOx and CO.
- Presume start of construction 2Q13, startup 3Q15. The “contemporaneous period” is 5 years prior to start of construction, through startup. So look at 2Q08 through 3Q15.

<table>
<thead>
<tr>
<th>Pollutant, tpy</th>
<th>NOx</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distillation Debottleneck Project</td>
<td>45</td>
<td>110</td>
</tr>
<tr>
<td>Other projects, 2Q08- 3Q15</td>
<td>-35</td>
<td>45</td>
</tr>
<tr>
<td>Net emissions increase</td>
<td>10</td>
<td>155</td>
</tr>
</tbody>
</table>

- So the project is a minor mod for everything except CO.
Since the project is subject to PSD for CO, is it a major modification under NSR.

Will need to do CO modeling since there is a federal ambient air standard. Find an expert.

Will need to a BACT analysis (Best Available Control Technology) – check out the EPA BACT Clearing house.

If any of the emission units triggered NSPS the project is also a significant modification under Title V.

Refer to the DEQ Website for required forms.
Basic Concepts of NSR – cont’d

• Nonattainment NSR (NNSR)
 – What if you are in a non-attainment area?
 • Thresholds are lower
 • You can also “net out”, but note: the contemporaneous period is different than for PSD. It from startup, to the beginning of that year, and then the prior 4 years. So for the Distillation Project, the contemporaneous period is 2011 – 3Q15.
 – NOx is regulated under both programs, if the area is ozone nonattainment
 • For a project with a 45 ton emission increase, you need two different netting analyses.
 • Watch for this as any new ozone standard comes out!
 – If you can’t net out, there is no modeling
 – Will need to offset the emission increase (check, it may be cheaper to net out)
 – May need to do LAER (Lowest Achievable Emission Rate) or offset at a higher ratio
The 3N’s of Air

Questions / Comments?

Diane H. Leche

diane.h.leche@exxonmobil.com