Energy Assessments for MACT & BACT

Gerry Vetter, P.E.
Waldemar S. Nelson & Company, Inc.
gerry.vetter@wsnelson.com
504-593-5413
Focus Today

• Introduce key B-MACT provisions affecting LA industry

• Look at how the B-MACT and GHG BACT are related

• Take a quick look at the two provisions with which most major LA sources must comply
Boiler MACT for LA

• No emission limits for most units (Gas 1)
• Work Practice Compliance Due Mar 21, 2014
• Once you are in...
 – Tune-ups annually for Gas 1 boilers ≥10MMBtu/hr
 – Biennially for any boiler / heater <10MMBtu/hr
 – One time energy efficiency assessment

• If you add a new unit – any change to due date?
Boiler MACT and GHG BACT – Related?

- EPA GHG guidance refers to work practices,
- MACT standard includes two:
 - Tune-ups
 - Energy efficiency assessments

- B-MACT specificity may lend itself to BACT
- Will B-MACT “Energy Use System” approach spread?
• EPA BACT guidance: “...the permit could also lay out a requirement to...”
 – Implement an Energy Management System
 – Implement actions that result in net savings
• MACT energy efficiency assessments:
 – Parallel universe
 • Review energy use systems and management
 • Identify cost effective measures
WP 1: Annual Tune-ups

- Inspect the burner
- Check the flame
- Check air-fuel ratio controls
- Minimize carbon monoxide / maximize efficiency
- Maintain results onsite
WP 2: Energy Efficiency Assessment

Overview

• Review management and operating practices

• ID cost effective efficiency opportunities
Energy Efficiency Assessment

- Inventory major energy consuming (use) systems
- Review and evaluate
 - Facility plans
 - Energy use specs
 - Operating maintenance procedures
 - Unusual operating constraints
 - Logs / fuel use records
- Inspect boiler(s) or process heater(s)
Steps in an Assessment cont’d

• Recommend improvements to energy management practices

• List major energy conservation measures

• Describe energy savings potential
 – Cost effective

• Prepare comprehensive report
Who Conducts the Assessment?

- Proposed B-MACT Assessor
 - Certified by DOE*, or
 - Association of Energy Efficiency Engineers

- Final B-MACT Assessor
 - Certified specialists
 - Experienced practitioners
 - Demonstrable capabilities

*5 DOE certifications: steam, process heat, compressed air, fans, pumps and motors
Time and Focus

Tier 1 34.2 MMBtu/hr
 – One day (really?)
 – 50% of energy use output

Tier 2 34.2-114 MMBtu/hr
 – 3 days
 – 33% of energy use output

Tier 3 >114 MMBtu/hr
 – No time limits
 – 20% of energy use output
Tier 1 Example
30 MMBtu/hr Hot Oil Heater

• Determine...
 – The 50%+ energy use system
 – Stack temperature / O_2 / CO
 – Temps, flows, pressures - hot oil
 – Temps, flows, pressures – other medium

• Inspect insulation

• Review combustion controls / fuel use records
Tier 1 Example
30 MMBtu/hr Hot Oil Heater

• Evaluate...
 – combustion efficiency
 – Heat exchanger efficiency
 – Heat losses
 – Management / operational controls

• Suggest changes and create estimate of cost effectiveness

• Write final report

• Plant certifies completion to agency
Tiers Revisited

Tier 1 34.2 MMBtu/hr
 – One day (really?)
 – 50% of energy use output

Tier 2 34.2-114 MMBtu/hr
 – 3 days
 – 33% of energy use output

Tier 3 >114 MMBtu/hr
 – No time limits
 – 20% of energy use output
Tier 3 Reality – Major Refinery

- 40 times the heat duty needed for Tier 3
- 46 affected units
- 20% of energy use systems
 - Involves several sources
 - Pre-planning needed for such a site

Note: systems consuming onsite-generated electric power are fair game
Geez, Do I Have To?

- Ammonia Plant Assessment
 - saves approximately **$3.5 million** annually
 - Saves 497,000 MMBtu
 - simple payback of 11 months

- Chemical Plant Assessment
 - Saves **$1.9 million** annually
 - Saves 272,000 MMBtu annually
 - simple payback of 1.5 months
EPA Influenced by DOE

- DOE certifications
 - Steam System Specialist
 - Process Heating Specialist
 - Others...

- DOE Tools
 - SSST / SSAT / PHAST

- DOE Programs
 - Industrial Technology Program / Energy STAR EPI / Energy Star Guidelines
Quick Look: DOE Tools

- SSST
- SSAT
- PHAST
- EPIs
Scoping Tool: Systems Review

SUMMARY OF STEAM SCOPING TOOL RESULTS

<table>
<thead>
<tr>
<th>Category</th>
<th>Possible Score</th>
<th>Your Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam System Profiling</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>Steam System Operating Practices</td>
<td>140</td>
<td>72</td>
</tr>
<tr>
<td>Boiler Plant Operating Practices</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>Distribution, End Use, Recovery Op. Practices</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Total Scoping Tool Questionaire Score</td>
<td>340</td>
<td>72</td>
</tr>
<tr>
<td>Total Scoping Tool Questionaire Score (%)</td>
<td></td>
<td>21.2%</td>
</tr>
</tbody>
</table>
SSAT Project Models

Steam System Assessment Tool

SSAT Default 3 Header Model

Model Status: OK

Economic Summary based on 2760T $700k/yr

Power Balance
- Generation: 7,854 kW
- Demand: 7,954 kW
- Unit Cost: $0.0600/kWh

Fuel Balance
- Boiler: 29,712 gal/h
- Unit Cost: $0.30/gal

Make-Up Water
- Flow: 10,015 gal/h
- Unit Cost: $0.0325/gal

Total Operating Cost: $22,485
SSAT Project Evaluations

<table>
<thead>
<tr>
<th>Cost Summary</th>
<th>Current Operation</th>
<th>After Projects</th>
<th>Reduction</th>
<th>Reduction %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Cost</td>
<td>2,190</td>
<td>2,192</td>
<td>-2</td>
<td>-0.1%</td>
</tr>
<tr>
<td>Fuel Cost</td>
<td>21,342</td>
<td>19,063</td>
<td>2,279</td>
<td>10.7%</td>
</tr>
<tr>
<td>Make-Up Water Cost</td>
<td>434</td>
<td>401</td>
<td>33</td>
<td>7.7%</td>
</tr>
<tr>
<td>Total Cost (in $ '000s/yr)</td>
<td>23,966</td>
<td>21,656</td>
<td>2,311</td>
<td>9.6%</td>
</tr>
</tbody>
</table>
DOE’s PHAST Program

- Heaters and Boilers only
- Before and after analysis
- Multi-unit capacity
PHAST Results – Single Unit

U.S. Department of Energy
Energy Efficiency and Renewable Energy
Bringing you a prosperous future where energy is clean, abundant, reliable and affordable

Plant Name: Test Petroleum plant - US
Furnace Name: New Heater no. 2

Furnace heat input

Gross fuel heat input
21,610,578 Btu/hr
15,374,087 Btu/hr

Available heat
14,654,133 Btu/hr
12,002,550 Btu/hr

Flue gas losses
6,956,445 Btu/hr
3,715,537 Btu/hr

Other losses
52,372 Btu/hr
12,933 Btu/hr

Wall losses
399,608 Btu/hr
225,603 Btu/hr

Opening losses
497,749 Btu/hr
39,550 Btu/hr

Useful output (heat to load)
13,203,680 Btu/hr
11,163,680 Btu/hr

Atmosphere losses
0 Btu/hr
0 Btu/hr

Water cooling losses
500,724 Btu/hr
500,724 Btu/hr

Fixture/conveyor losses
0 Btu/hr
0 Btu/hr

Legend:
- Current
- Modified
PHAST Plant Summary

Example Output

<table>
<thead>
<tr>
<th>Heating Equipment</th>
<th>Fuel Energy Use (Million Btu/Year)</th>
<th>Annual Cost (USD/Year)</th>
<th>Electric Energy Use (Thousand kWh/Year)</th>
<th>Annual Cost (USD/Year)</th>
<th>Steam Energy Use (Million Btu/Year)</th>
<th>Annual Cost (USD/Year)</th>
<th>Annual Total Cost (USD/Year)</th>
<th>% of Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam Boiler</td>
<td>188,698</td>
<td>943,488</td>
<td>920</td>
<td>73,592</td>
<td>2,376,192</td>
<td>23,761,920</td>
<td>24,779,000</td>
<td>45.72</td>
</tr>
<tr>
<td>HP Boiler</td>
<td>209,664</td>
<td>419,328</td>
<td>0</td>
<td>0</td>
<td>2,358,720</td>
<td>23,587,200</td>
<td>24,006,528</td>
<td>44.29</td>
</tr>
<tr>
<td>New Heater no. 2</td>
<td>268,800</td>
<td>1,344,000</td>
<td>917</td>
<td>0</td>
<td>126,706</td>
<td>1,257,056</td>
<td>2,611,056</td>
<td>4.82</td>
</tr>
<tr>
<td>Heater 3</td>
<td>403,200</td>
<td>2,016,000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,016,000</td>
<td>3.72</td>
</tr>
<tr>
<td>Distillation unit</td>
<td>0</td>
<td>0</td>
<td>192</td>
<td>15,360</td>
<td>75,492</td>
<td>754,915</td>
<td>770,275</td>
<td>1.42</td>
</tr>
<tr>
<td>Cat Cracker</td>
<td>0</td>
<td>0</td>
<td>413</td>
<td>20,140</td>
<td>0</td>
<td>0</td>
<td>20,140</td>
<td>0.04</td>
</tr>
<tr>
<td>SynGas heater</td>
<td>0</td>
<td>0</td>
<td>8,280</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>1,070,362</td>
<td>4,722,816</td>
<td>10,722</td>
<td>109,092</td>
<td>4,937,109</td>
<td>49,371,091</td>
<td>54,202,999</td>
<td>100.00</td>
</tr>
<tr>
<td>Energy Performance Indicators</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Cement Manufacturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Dairy Processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Food Processing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Glass Manufacturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Iron and Steel Manufacturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Motor Vehicle Manufacturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Petrochemical Manufacturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Petroleum Refining</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Pharmaceutical Manufacturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Pulp and Paper Manufacturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Some Resources

• http://www1.eere.energy.gov/industry/saveenergy/energynow/index.html
 – Best Practices: Steam
 – Steam Tip Sheets
 – Improving Steam System Performance: A Source Book for Industry

• http://www.energystar.gov

• http://www.energystar.gov/index.cfm?c=in_focus.bus_industries_focus
Wrap Up

• B-MACT energy efficiency assessments:
 – Structured framework could influence GHG BACT thinking
 – Can be reviewed by DEQ at any time

• If NSPS is BACT floor, then what of the B-MACT?