Impact of Deepwater Horizon Oil Spill on the Gulf Coast Air Quality: A Preliminary Assessment

Bhaskar Kura, PhD, PE

Director, Maritime Environmental Resources and Information Center (MERIC) Professor of Civil & Environmental Engineering <u>bkura@uno.edu</u> <u>http://coe.uno.edu/cee/kura/index.html</u>

http://coe.uno.edu/meric/

Suruchi Verma Graduate Student

University of New Orleans October 27, 2010

Outline

- Deepwater Oil Spill Important Statistics
- Factors that Influence Air Emissions
- Orude and Natural Gas Characteristics
- Important Air Pollutants, Sources, and Health Effects
- Monitoring by Various Agencies
- Monitoring by UNO
- Results and Preliminary Assessment
- Additional Studies at UNO

Important Spill Statistics

- **Spill date**: 20 April, 2010 15 July, 2010
- Well officially sealed: 19 September, 2010
- Depth of the spill: 5000 feet Area of spill: 30,000sq miles
- Loss of life: The explosion (of about 36 hours) killed 11 platform workers and injured 17 others
- Wellhead officially capped: July 15, 2010
- Crude released before capping:
 - 4.28 million barrels or 180 million gallons
- Initial rate of crude release: <u>62,000 barrels per day</u>
 - Decreased to <u>53,000 barrels per day just before being capped.</u>
- Well closure date: 19 September, 2010; Well was declared officially dead.

Spill – Predictions

Source	Date	Barrels per day	Gallons per day
BP estimate of hypothetical worst case			
scenario (assumes no blowout			
preventer)	Permit	162,000	6,800,000
United States Coast Guard	April 23 (after sinking)	0	0
BP and United States Coast Guard	24-Apr	1,000	42,000
Official estimates	29-Apr	1,000 to 5,000	42,000 to 210,000
Official estimates	27-May	12,000 to 19,000	500,000 to 800,000
Official estimates	10-Jun	25,000 to 30,000	1,100,000 to 1,300,000
Flow Rate Technical Group	19-Jun	35,000 to 60,000	1,500,000 to 2,500,000
Internal BP documents hypothetical			
worst case (assumes no blowout			
preventer)	20-Jun	up to 100,000	up to 4,200,000
Official estimates	2-Aug	62,000	2,604,000

Deepwater Horizon, Gulf of Mexico; 2010

First Gulf War, Kuwait; 1991

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000 6,000,000

First Gulf War, Kuwait; 1991	Deepwater Horizon, Gulf of Mexico; 2010	Ixtoc 1, Mexico; 1979 (Spill from Well)	Exxon Valdez, Alaska; 1989
5,700,000	4,280,000	3,300,000	260,000

Factors that Influence Air Emissions from Spills

Magnitude of spill

Composition of crude and natural gas

Output Characteristics of spill

Hydrological conditions

Meteorological conditions

Typical Crude Composition

- Hydrogen 11 14%
- Sulfur 0.06 2%
- Nitrogen 0.1 2%
- Oxygen 0.1 − 2%

Benzene	0-2%
Toluene	0-20%
Xylene	0-20%
Ethylbenzene	0-4%
Trimethyl Benzene	0-2%
Hydrogen Sulphide	0-1%
PAHs	1-10%

Typical Natural Gas Composition

٢	Carbon	65 – 80%	Methane	70-98%
۲	Hydrogen	1 – 25%	Ethane	1-10%
۲	Sulfur	0.0-0.2%	Propane	< 5%
0	Nitrogen	1 – 15%	O Butane	< 2%

Spill and Spill Related Sources of Air Emissions

- Direct release Natural Gas (Methane and others)
- Evaporation (VOCs/HAPs; light and heavy organics)
- O Burning (CO; CO₂; SO₂; NO_x; Others)
- Spill response equipment and vehicles (VOCs; NO_x; PM; CO; Heavy metals)
- Short term and long term remediation (by products of remediation)

Selective HAPs from Spill and Health Impacts

Chemical Name	Health Effects
Benzene	Causes cancer, adverse effects on Skin, causes fatigue and irritability, reduces blood flow, decreases fertility, birth defects.
Benzo a pyrene (PAH)	Lung and other cancer; adequate evidence among animals and inadequate evidence in humans.
Naphthalene	Cataracts and damage to the retina. EPA has classified naphthalene as a Group C, possible human carcinogen.
Toluene	Child birth defects, cause adverse effects on the liver, alters immune system, kidney failure. Effects central nervous system and respiratory system
Xylene	Variety of cardiovascular diseases, child birth and growth defects, kidney failure, skin disease. Affects nervous system, immune system, respiratory system and reproductive system.
Ethylbenzene	Cancer causing (lab rats), kidney and liver failure, skin diseases. Effects endocrine system, reproductive and respiratory system; EPA has classified ethylbenzene as a Group D, not classifiable as to human carcinogenicity
Nickel	Cancer causing, cardiovascular diseases, effects child birth and growth, kidney failure, skin diseases. Effects nervous system, immune system, reproductive system and respiratory system.

Air Monitoring Locations (PM₁₀; H₂S; VOCs; PAHs)

UNO Air Monitoring Efforts

Locations: Grand Bayou; Southpass 55;
Olga

• H₂S; PM₁₀; PM_{2.5}: Real-time Monitoring

 VOCs/HAPs: Sampling by summa canisters; Analysis using TO-15

ASU Team Working with UNO

El Paso Team Supporting UNO

Preliminary Assessment (April 28th to June 5, 2010)

Chemical Name	Lowest Concentration Recorded after Spill	Highest Concentration Recorded after Spill	Ambient Air Quality Standards	OSHA Limits
Benzene	0	16.2 μg/m³ [125 times]	0.13 μg/m³© , 30 μg/m³ (nc)	32 mg/m ³ (10ppm)
Toluene	0	169 μg/m³	300 μg/m ³ (nc)	750mg/m ³ (200ppm)
Xylene	0.663 μg/m ³	68.6 μg/m³	100 μg/m³ (nc)	435mg/m ³ (100ppm)
Ethylbenzene	0	12.3 μg/m³	1000 μg/m³(nc)	435mg/m ³ (100ppm)
Nickel	Not available	Not available	0.004 μg/m³ ©,0.05 μg/m³(nc)	1mg/m ³
Naphthalene	0.0052 μg/m ³	16 μg/m ³ [120 times]	0.05 μg/m³(nc)	50mg/m ³ (10ppm)

Preliminary Assessment (April 28th to June 5, 2010)

Chemical Name	Lowest Concentration Recorded after Spill	Highest Concentration Recorded after Spill	Ambient Air Quality Standards	OSHA Limits
Benzo (a) anthracene	-	-	0.009 © μg/m³	-
Benzo (a) pyrene	0	0.001568 μg/m ³ [2 times]	0.0009© μg/m ³	0.2mg/m ³
Benzo (b) fluoranthene	0	0.001245 μg/m³	0.009 © μg/m³	-
Chrysene	0.00003 μg/m ³	0.00136 μg/m³	0.09 © μg/m³	0.2mg/m ³
Diesel Products	-	-	-	-

Preliminary Assessment (April 28th to June 5, 2010)

Chemical Name	Lowest Concentration Recorded after Spill	Highest Concentration Recorded after Spill	Ambient Air Quality Standards	OSHA Limits
Sulphur Dioxide	-	-	365 μg/m ³ (24 hr avg), 80 μg/m ³ (annual avg)	13mg/m ³ (5ppm)
Carbon dioxide	-	-	-	9000mg/m ³ (5000ppm)
Carbon monoxide	-	-	10mg/m ³ (8 hr avg), 40mg/m ³ (1hr avg)	55mg/m ³ (50ppm)
Hydrogen Sulphide	139 μg/m ³ (0.1 ppm)	2085 μg/m ³ (1.5 ppm) [7.5 to 15 times]	278 μg/m ³ (1 hr avg), 139 μg/m ³ (24 hr avg)	15 mg/m ³ (10ppm)
Methane	_	-	160 μg/m ³ (3 hr avg)	Simply Asphyxiant

Preliminary Assessment (April 28th to August 20, 2010)

Chemical Name	Lowest Concentration Recorded after Spill	Highest Concentration Recorded after Spill	Ambient Air Quality Standards	OSHA Limits
PM ₁₀ (DataRAM, MIE; or EBAM, Met One, Inc.)	0	944.2 μg/m ³ [6 times]	150 μg/m ³ (Not to exceed once/yr over 3-yr period)	
Total VOCs (Area RAEs)	0	71.9 ppm		
Hydrogen Sulphide (Area RAEs)	0 μg/m ³ (0 ppm)	2085 μg/m ³ (1.5 ppm) [7.5 to 15 times]	278 μg/m ³ (1 hr avg), 139 μg/m ³ (24 hr avg)	15 mg/m ³ (10ppm)

Additional Studies Under Progress at UNO

Questions Being Addressed

- What specific air pollutants were emitted from the spill?
- What were the quantities emitted?
- How did they change from April 20th to July 15th, 2010 and beyond?
- Why is this information important?

• How can we evaluate cancer and non-cancer health risks to public and response workers?

Methods to Estimate Emissions

Laboratory Simulation

• To trace **evaporation** rate

Build emission spectrum

Inverse Dispersion Modeling

To trace <u>emission</u> rate

Build emission spectrum

Emission Spectrum for 10-Day Hypothetical Spill (Unknown Mass Units)

Day	1	2	3	4	5	6	7	8	9	10	Total
1	20	-	-	-	-	-	-	-	-	-	20
2	17	40	–	-	-	-	-	-	-	-	57
3	15	34	60	_	-	-	-	-	-	-	109
4	12	30	51	60	-	_	-	-	-	-	153
5	10	24	45	51	20	_	-	-	-	-	150
6	7	20	36	45	17	20	-	-	-	-	145
7	6	14	30	36	15	17	20	-	-	-	138
8	5	12	21	30	12	15	17	20	-	-	132
9	3	10	18	21	10	12	15	17	20	-	126
10	1	6	15	18	7	10	12	15	17	20	121
11	-	2	9	15	6	7	10	12	15	17	93
12	-	-	3	9	5	6	7	10	12	15	67
13	-	-	-	3	3	5	6	7	10	12	46
14	-	-	-	-	1	3	5	6	7	10	32
15	-	-	-	-	-	1	3	5	6	7	22
16	-	-	-	-	-	-	1	3	5	6	15
17	-	-	-	_	-	-	-	1	3	5	9
18			-	_			-	-	1	3	4
19			-	_	-	-	-	-	-	1	1

Emission Spectrum for Unknown HAP

Emission Spectrum of Multiple Sources for an Unknown HAP

Fv Versus Θ

Plot of Volume Fraction Evaporated vs. Evaporative Exposure for Kuwait Crude at 22C (Stiver and Mackay, 1984)

Evaporative Exposure $\Theta = \frac{kat}{V_o}$ $= \frac{kt}{d_o}$

Θ	= evaporative exposure (dimensionless)
k	= mass transfer coefficient (m/s)
а	= area of the oil surface (m2)
t	= elapsed time since the spill (s)
Vo	= volume of the spill (m ³)
d _o	= depth of the spill (m)

Lab-scale Wind Tunnel Study (Johnson, 2010)

Inverse Gaussian Dispersion Modeling

$$C = \frac{Q}{2\pi\sigma_y\sigma_z} \exp\left(-\frac{1}{2}\frac{y^2}{\sigma_y^2}\right) \left\{ exp\left(-\frac{(z-H_e)^2}{2\sigma_z^2}\right) + exp\left(-\frac{(z+H_e)^2}{2\sigma_z^2}\right) \right\}$$

 $Z=H_e=0$

$$C = \frac{Q}{\pi u \sigma_{y} \sigma_{z}} \exp\left(-\frac{1}{2} \frac{y^{2}}{\sigma_{y}^{2}}\right)$$
$$f = \frac{1}{\pi u \sigma_{y} \sigma_{z}} \exp\left(-\frac{1}{2} \frac{y^{2}}{\sigma_{y}^{2}}\right)$$

 $C_{i,j} = f(x,y)_{i,j} * Q_j$

$$q = \mathbf{F}^{-1} c_{\text{measured}}$$

Inverse Gaussian Dispersion Modeling

Emission Spectrum of Multiple Sources for an Unknown HAP

Advantages of Inverse Dispersion Modeling

- No need to know actual oil leak quantities
- Quantities estimated are based on actual ambient concentrations recorded
- Allows identification of the emission locations (equally important in evaluating health risks)
- Ability to quantify a variety of VOCs or HAPs
- Ability to quantify emissions from spill response related activities such as burning, remediation etc. (e.g., PM, CO, CO₂, SO₂, NO_x)

Conclusions

- Large scale efforts are needed to clearly understand air quality impacts
- Emission spectra for various air pollutants, development of software applications/models are needed
- Output States of the state of the states of the states
- UNO collaborating with many agencies and corporations to accomplish its goals and welcomes your participation

Thank you for your attention!

QUESTIONS?