Tank Calculation Updates & Reporting Practices

A&WMA - Louisiana Section Annual Conference

October 28, 2021

Agenda

- Storage Tank Calculation Methodology Overview
 - Storage Tank Emissions by Tank Type
 - Fixed Roof Tank
 - Floating Roof Tank
 - AP-42 Chapter 7 Updates
- Case Study: Pre-AP-42 Update vs. Post-AP-42 Update Sensitivity Analysis
- Storage Tank Emissions Inventory Reporting Practices

Storage Tank Calculation Methodology Overview

- Fixed Roof Tank
 - Routine Losses
 - Standing Losses
 - Emissions associated with vapor expansion and contraction due to temperature and barometric pressure changes.
 - Working Losses
 - $_{\odot}~$ Emissions associated with the evaporative loss from filling.
- Floating Roof Tank

ems

- Routine Losses
 - Standing Losses
 - $_{\odot}~$ Emissions associated with the rim seal and deck fitting losses.
 - Working Losses (Withdrawal Loss)
 - $_{\odot}~$ Emissions associated with the lowering of the liquid level in the tank.

Storage Tank Calculation Methodology Overview - Fixed Roof Tanks

- Total Routine Losses (Eqn. 1-1, AP-42 Chapter 7, 06/20)
 - $\circ \quad L_T = L_S + L_W$
 - $L_T = Total Routine Losses \left(\frac{lb}{yr}\right)$
 - $L_S = Total Standing Losses \left(\frac{lb}{yr}\right)$
 - $L_W = Total Working Losses \left(\frac{lb}{yr}\right)$
- Standing Losses (Eqn. 1-2, AP-42 Chapter 7, 06/20)
 - $\circ \quad L_S = 365 \cdot \left(\frac{\pi}{4}D^2 \cdot H_{VO}\right) \cdot W_V \cdot K_E \cdot K_S$
 - D = Tank Diameter (ft)

ems

- $H_{VO} = Vapor Space Outage (ft)$
- $W_V = Stock Vapor Density \left(\frac{lb}{ft^3}\right)$
- $K_E = Vapor Space Expansion Factor, per day$
- K_S = Vented Vapor Saturation Factor, Dimensionless
- 365 = Constant, Number of Daily Events in a Year, Days per Year

- □ Working Losses (Eqn. 1-35, AP-42 Chapter 7, 06/20)
 - $\circ \quad L_W = V_Q \cdot K_N \cdot K_P \cdot W_V \cdot K_B$
 - $V_Q = Net Working Loss Throughput \left(\frac{ft^3}{yr}\right)$
 - K_N = Working Loss Turnover (Saturation) Factor, Dimensionless
 - Turnovers > 36, $K_N = (180+N)/6N$; Turnovers $\leq K_N = 1$
 - *K_P* = Working Loss Product Factor, Dimensionless
 - Crude, $K_p = 0.75$; All other $K_p = 1$
 - $K_B = Vent Setting Correction Factor, Dimensionless$

Storage Tank Calculation Methodology Overview - Floating Roof Tanks

- Total Routine Losses (Eqn. 2-1, AP-42 Chapter 7, 06/20)
 - $\circ \quad L_T = L_S + L_W$
 - $L_T = Total Routine Losses \left(\frac{lb}{yr}\right)$
 - $L_S = Total Standing Losses \left(\frac{lb}{yr}\right)$
 - $L_W = Total Working (Withdrawal)Losses \left(\frac{lb}{yr}\right)$
- □ Standing Losses (Eqn. 2-2, AP-42 Chapter 7, 06/20)
 - $\circ \quad L_S = L_R \cdot L_F \cdot L_D$
 - $L_R = Rim Seal Losses\left(\frac{lb}{yr}\right)$, See Eqn 2 3
 - $L_F = Deck \ Fitting \ Losses\left(\frac{lb}{yr}\right)$, See Eqn. 2–13
 - $L_D =$ Deck Seam Losses (Internal Floating Roof (IFR)Tanks Only) $\left(\frac{lb}{yr}\right)$, See Eqn. 2–18

□ Working Losses (Eqn. 2-19, AP-42 Chapter 7, 06/20)

$$\circ \quad L_W = \frac{0.943 \cdot Q \cdot C_S \cdot W_L}{D} \cdot \left(1 + \frac{N_C \times F_C}{D}\right)$$

- $Q = Annual Net Throughput \left(\frac{bbl}{yr}\right)$
- $C_S = Shell Clingage Factor\left(\frac{bbl}{1000 ft^2}\right)$
- $W_L = Average \ Organic \ Liquid \ Density \ \left(\frac{lb}{aal}\right)$
- D = Tank Diameter (ft)
- 0.943 = Constant, 1,000 $ft^3 \cdot \frac{gal}{bbl^2}$
- $N_{C} = Number of Fixed Roof Support Columns, Dimensionless$
 - Self Supporting Fixed Roof or External Floating Roof (EFR)), $N_C = 0$
 - Column Supported Fixed Roof, N_C = Use Tank Specific Info or Table 7.1 – 11
- $F_C = Effective Column Diameter (ft)(Column Perimeter \frac{|ft|}{\pi})$

Storage Tank AP-42 Calculation Updates

- Removal and Clarification of Alternative Working Loss Equation for Fixed Roof Tanks
- Provided Net Working Loss Throughput Guidance
- Updated Paint Solar Absorptance Data
- Updated Meteorological Data

ems

- Temperature Equation Updates
- Added Methodologies for Calculating Emissions from Non-Routine Activities (i.e., Tank Cleanings)
- New Emission Factors for Additional Guidepole Fittings
- Specified TANKS 4.09d was no longer being updated and supported by the Environmental Protection Agency (EPA)

Net Working Loss Throughput Guidance

- Revision included language to detail that the Net Working Loss Throughput, V_Q is most accurately quantified by the increases in liquid level in the tank as opposed to utilizing pump throughput.
- Updated Paint Solar Absorptance Data
 - □ Historical Paint Reflective Conditions only included "Good" and "Poor"
 - □ New Paint Reflective Conditions Updated to include "New", "Average" and "Aged"

Old Factors

New Factors

Table 7.1-6. PAINT SOLAR ABSORPTANCE^a

Table 7.1-7. PAINT SOLAR ABSORPTANCE FOR FIXED ROOF TANKS^a

	-	Paint Fa	ctors (a)	
		Paint C	ondition	
Paint Color	Paint Shade or Type	Good	Poor	
Aluminum	Specular	0.39	0.49	
Aluminum	Diffuse	0.60	0.68	
Gray	Light	0.54	0.63	
Gray	Medium	0.68	0.74	
Red	Primer	0.89	0.91	
White	NA	0.17	0.34	

Surface Color	Shade or Type	Ref	Reflective Condition (see Note 1)		
		New	Average	Aged	
White		0.17	0.25	0.34	
Aluminum	Specular	0.39	0.44	0.49	
Aluminum	Diffuse	0.60	0.64	0.68	
Beige/Cream		0.35	0.42	0.49	
Black		0.97	0.97	0.97	
Brown		0.58	0.62	0.67	
Gray	Light	0.54	0.58	0.63	
onay	Light	0.01	0.00	0.00	

Valero

ണട്

- Temperature Equation Updates (Fixed Roof Tanks (Uninsulated))
 - □ Updated the equations for Average Daily Vapor Temperature Range (ΔT_V) and Daily Average Liquid Surface Temperature (T_{LA}) to be based off a default value of $H_S/D = 0.5$ for uninsulated fixed roof tanks or calculated.
 - Old Equations:

ems

- $\Delta T_V = 0.72 \cdot \Delta T_A + 0.028 \cdot \alpha \cdot I$
- $T_{LA} = 0.44 \cdot T_{AA} + 0.56 \cdot T_B + 0.0079 \cdot \alpha \cdot I$
- New Equations $(H_s/D = 0.5)$:
 - $\Delta T_V = 0.7 \cdot \Delta T_A + 0.02 \cdot \alpha \cdot I$
 - $\cdot \quad T_{LA} = 0.4 \cdot T_{AA} + 0.6 \cdot T_B + 0.005 \cdot \alpha \cdot I$
- New Equations (H_s/D = Calculated):

$$\Delta T_{V} = \left(1 - \left(\frac{0.8}{2.2 \cdot \frac{H_{S}}{D} + 1.9}\right)\right) \cdot \Delta T_{A} + \frac{(0.042 \cdot \alpha_{R} \cdot I) + 0.026 \cdot \frac{H_{S}}{D} \cdot \alpha_{S} \cdot I}{2.2 \cdot \frac{H_{S}}{D} + 1.9}$$

$$T_{LA} = \left(0.5 - \left(\frac{0.8}{4.4 \cdot \frac{H_{S}}{D} + 3.8}\right)\right) \cdot T_{AA} + \left(0.5 - \left(\frac{0.8}{4.4 \cdot \frac{H_{S}}{D} + 3.8}\right)\right) \cdot T_{B} + \frac{(0.0212 \cdot \alpha_{R} \cdot I) + 0.013 \cdot \frac{H_{S}}{D} \cdot \alpha_{S} \cdot I}{4.4 \cdot \frac{H_{S}}{D} + 3.8}$$

Included language detailing that it is always preferable to use measured liquid bulk temperature data rather than calculating it from an equilibrium with ambient atmospheric conditions.

- Temperature Equation Updates (Floating Roof Tanks (Uninsulated))
 - Updated the equations for Daily Average Liquid Surface Temperature (T_{LA}) to be based off a default value of $H_S/D = 0.5$ or calculated.
 - New Equations $(H_s/D = 0.5)$:
 - Uninsulated IFR / Domed EFR
 - $T_{LA} = 0.3 \cdot T_{AA} + 0.7 \cdot T_B + 0.004 \cdot \alpha \cdot I$
 - EFR Steel Pontoon Single Deck

•
$$T_{LA} = 0.7 \cdot T_{AA} + 0.3 \cdot (T_{AA} + 0.007 \cdot \alpha \cdot I) + 0.008 \cdot \alpha \cdot I$$

• EFR Steel Double Deck

•
$$T_{LA} = 0.3 \cdot T_{AA} + 0.7 \cdot (T_{AA} + 0.005 \cdot \alpha \cdot I) + +0.009 \cdot \alpha \cdot I$$

- New Equations (H_s/D = Calculated):
 - Uninsulated IFR / Domed EFR

$$T_{LA} = \frac{\left(2.86 \cdot \frac{H_S}{D} + 1.43\right) \cdot T_{AA} + \left(3.52 \cdot \frac{H_S}{D} + 3.79\right) \cdot T_B + (0.027 \cdot \alpha_R \cdot I) + (0.017 \cdot \frac{H_S}{D} \cdot \alpha_S \cdot I)}{6.38 \cdot \frac{H_S}{D} + 5.22}$$

• EFR Steel Pontoon Single Deck

•
$$T_{LA} = 0.7 \cdot T_{AA} + 0.3 \cdot (T_{AA} + \frac{(0.71 \cdot \alpha_R \cdot I + 0.485 \cdot \frac{H_S}{D} \cdot \alpha_S \cdot I)}{(170 \cdot \frac{H_S}{D} + 57)} + 0.008 \cdot \alpha_R \cdot I$$

• EFR Steel Double Deck

ems

•
$$T_{LA} = 0.3 \cdot T_{AA} + 0.7 \cdot (T_{AA} + \frac{(0.39 \cdot \alpha_R \cdot I + 0.485 \cdot \frac{H_S}{D} \cdot \alpha_S \cdot I)}{(170 \cdot \frac{H_S}{D} + 45)} + 0.009 \cdot \alpha$$

Included language detailing that it is always preferable to use measured liquid bulk temperature data rather than calculating it from an equilibrium with ambient atmospheric conditions.

Updated Meteorological Data

- □ Meteorological Data was updated to include Average Wind Speed (V) and Average Atmospheric Pressure (P_A) in Table 7.1-7 Meteorological Data for Selected U.S. Locations.
- Added Methodologies for Calculating Emissions from Non-Routine Activities (i.e., Tank Cleanings) (Section 7.1.3.4 of AP-42 Chapter 7)
 - Note: This methodology is used to calculate the amount of vapors that are emitted from tanks during activities such as maintenance.
- Added Additional Fitting Emission Factors
 - Rim Seals
 - Added emission factors for "tight-fitting" rim seals along with the definition as follows in Table 7.1-8:

"Tight-fitting" means that the rim seal is maintained with no gaps greater than 1/8 in. wide between the rim seal and the tank shell. It is not appropriate to use the values for tight-fitting seals unless the seal is known to be maintained with gaps no greater than 1/8 in. through the full range of liquid level in the tank.

10

Valero

- Deck Fittings
 - Added emission factors for the following fittings in Table 7.1-12:
 - Flexible enclosure as a slotted guidepole control
 - $_{\circ}$ $\,$ Ladder sleeve as a ladder-guidepole control
 - Specified Deck Legs for IFR and EFR Tanks

Case Study: Pre-AP-42 Update vs. Post-AP-42 Update Sensitivity Analysis

Tank Characteristics:

Tank Type	Product	RVP	Throughput (BPY)	Diameter (ft)	Height (ft)	Fixed Roof Type	Floating Roof Type	Shell & Roof Condition (Pre-2019)	Shell & Roof Condition (Post-2019)
EFR	Gasoline	13.5	1,000,000	150	40	No Fixed Roof (Open Top)	Steel Pontoon- Type EFR	Good	Average
Horizontal	Diesel	-	1,000	4	6	Horizontal Tank	No Floating Roof (FXR)	Good	Average
IFR	Gasoline	13.5	1,000,000	150	40	Column- Supported (Cone)	Steel Welded Deck IFR	Good	Average
VFRT	Diesel	-	1,000,000	150	40	Column- Supported (Cone)	No Floating Roof (FXR)	Good	Average

11

Valero

Assumptions:

- New Orleans, Louisiana Meteorological Data
- □ Shell & Roof Finish = White

Case Study: Pre-AP-42 Update vs. Post-AP-42 Update Sensitivity Analysis

Element		ΔT_{V}		T _{LA}			
Element	FXR	IFR	EFR	FXR	IFR	EFR	
Met. Constants	2%	N/A	N/A	4%	4%	4%	
Equation Update	-11%	N/A	N/A	-1%	-1%	1%	
Total	-10%	N/A	N/A	3%	3%	5%	

12

-2

Valero

Temperature Equation & Meteorological Data Updates

• Utilized Default $H_s/D = 0.5$ Equations

- Fixed Roof Tanks
 - $\Delta T_V = 0.7 \cdot \Delta T_A + 0.02 \cdot \alpha \cdot I$
 - $T_{LA} = 0.4 \cdot T_{AA} + 0.6 \cdot T_B + 0.005 \cdot \alpha \cdot I$
- IFR

- $T_{LA} = 0.3 \cdot T_{AA} + 0.7 \cdot T_B + 0.004 \cdot \alpha \cdot I$
- EFR Steel Pontoon Single Deck
 - $T_{LA} = 0.7 \cdot T_{AA} + 0.3 \cdot (T_{AA} + 0.007 \cdot \alpha \cdot I) + 0.008 \cdot \alpha \cdot I$

Case Study: Pre-AP-42 Update vs. Post-AP-42 Update Sensitivity Analysis

Emissions Summary

Tank Type	Standing L	osses (lbs)	Percent Change	Working Losses (lbs)		Working Losses (lbs)		Percent Change	Total Emis	ssions (lbs)	Percent Change
	Pre-2019	Post-2019		Pre-2019	Post-2019		Pre-2019	Post-2019			
EFR	21,284.48	22,758.45	6.93%	52.81	52.81	0.00%	21,337.28	22,811.26	6.91%		
Horizontal	0.10	0.10	-6.22%	0.64	0.67	5.91%	0.74	0.77	4.22%		
IFR	44,862.48	47,400.94	5.66%	87.31	87.31	0.00%	44,949.79	47,488.25	5.65%		
VFRT	990.82	928.62	-6.28%	1,148.70	1,216.62	5.91%	2,139.51	2,145.24	0.27%		

13

~~

Valero[®]

Case Study: Pre-AP-42 Update vs. Post-AP-42 Update Sensitivity Analysis

Tight-Fitting Rim Seal Option

Tank Type	Rim Seal Type	Standing Losses (lbs)	Rim Seal Loss (lbs)	Percent Change
EFR	Mechanical-Shoe Primary with Rim-Mounted Secondary	22758.45	9066	F 0/
EFR	Tight-fitting Mechanical-Shoe Primary with Rim-Mounted Secondary	22279.03	8586	-5%

All Tank Characteristics, Product, Throughput, and Fittings were the same. Only the Rim Seal Type was changed.

14

Valero

Storage Tank Emissions Inventory Reporting Practices

- Louisiana Department of Environmental Quality (LDEQ) required facilities to utilize the updated AP-42, Chapter 7.1 methodology beginning in Reporting Year 2020 (RY2020) for Emissions Inventory (EI).
- Additionally, LDEQ requires facilities to report emissions as they are calculated.
 - Working Loss Emissions
 - Standing (Breathing) Loss Emissions
- So how do we report storage tanks in the Emissions Reporting and Inventory Center (ERIC) for EI?

ERIC Upload Example - Sources Tab

Auto	oSave On 이	聞 り・ (~	~ 🖁 ~ 🗋 📼	ERICEmissions	nventory Exar	nple 100821 ຊ ^ຊ - Sav	ved 🔻	<u>, к</u>) Search		
File	Home	Insert Dra	w Page Layout Fo	rmulas Data	Review	View Develope	r H€	lp Add-ins	Acrobat	ASAP Utilities	
Ê	K Cut	Arial	~ 10 ~ A^	A ⊂ Ξ Ξ	≫r ~ ab	Wrap Text	Gener	al	~		20% - Accent
Paste ~	Sormat P	ainter B I	⊻ • ⊞ • <u>◇</u> • <u>A</u>	· = = =	€ ₹	Merge & Center 👻	\$~	% 9 500 →	Conditional Formatting ~		20% - Accent
	Clipboard	Гы	Font	LZ .	Alignment	LZ	il i	Number	r <u>u</u>		
M16		: × ✓	f _x			F		-	0		
4	A Source ID	C Subject Item ID	Source	D e Description		Source Type		F Permit Number	G EIQ Number	Status	M SIC
1	-	ubjeet terri b		booonphon	•		-	-		-	· · · · · · · · · · · · · · · · · · ·
2 TK-1	-1		ULSD Tank			Above ground storage			TK-1	Active	2911
3 TK-2	-2	EQT0000000002	Gasoline Tank			Above ground storage	vessel	0000-V0	TK-2	Active	2911
4 5											
6											
7											
8											
9											
10 11											
12											
13											
14											
15 16											

ERIC Upload Example - Processes Tab

ണ്ട്

AutoSave 이 이	B 9 · (~~ % ~ [} ≂	ERICEmissionsIn	ventory Example 100821	ب ^م - Saved -		Search			
File Home	Insert Di	raw Page Layout Forn	nulas Data	Review View	Developer He	elp Add-ins	Acrobat ASAP Utilities			
Paste Sformat	R	- 10 - A^ A I U - I I - <u>A</u> - <u>A</u> -		Image: Sympletic symplet Image: Symplet symplet Image: Symplet symp			Conditional Format as Formatting ~ Table ~			
Clipboard	Г	Font	F2	Alignment	rs I	Number 🕞				
G19 👻	G19 • : $\times \checkmark f_x$									
A Process ID	B Source ID	C Process Description	F Confidentiality	G SCC	H Material Name	l Average Annual	J Annual Throughput Units			
1	•		•	✓		Throughput 🝸	· · · · · · · · · · · · · · · · · · ·			
2 TK-1S	TK-1	Fixed Roof Tank (TK-1) Standing	No	40301099	ULSD		gallons/yr			
3 TK-1W	TK-1	Fixed Roof Tank (TK-1) Working	No	40301099	ULSD	100000000				
4 TK-2S	TK-2	Floating Roof Tank (TK-2) Standing		40301197	Gasoline		gallons/yr			
5 TK-2W	TK-2	Floating Roof Tank (TK-2) Working	No	40301197	Gasoline	100000000	gallons/yr			
6										
7										
8										
9										
9 10										
8 9 10 11 12										

ERIC Upload Example - Emissions Tab

Auto	Save On O	いいちょう	2 ~ B ~ B	⊽ ERI¢	CEmissionsInventory Example 100821 ۾	2 - Saved -		♀ Search
File	Home	Insert D	raw Page La	iyout Formulas	Data Review View Dev	veloper Help	Add-ins	Acrobat ASAP Utilitie
Ĉ	X Cut	Arial	~	10 ~ A^ A =	≡ 📄 ॐ ∽ 👌 Wrap Text	General		· 🖪 🙀
Paste	L Copy ∼ ≪ Format F	R	Ι <u>υ</u> - Η -	<u> </u>	≡ ≡ 至 至 🖽 Merge & Cent	ter ~ \$ ~ %	9 € .00	.00 Conditional Format as →0 Formatting ~ Table ~
	Clipboard	L2	Font	ات <u>ع</u>	Alignment	rs Nu	ımber	L2
D32	Ŧ	: × ~	f _x					
4	A	В	D	F	G	Н	I.	J
1 S	ource ID	Process ID	Release Point ID	Emission Type	Pollutant <	Total Emissions (Criteria: tons	Emissions Units	Estimation Method
2 TK-1		TK-1W	TK-1	Routine	Ethyl benzene	28	lb	Emissions Model
TK-1	1	TK-1W	TK-1	Routine	Naphthalene (and Methylnaphthalenes)	1	lb	Emissions Model
TK-1	1	TK-1W	TK-1	Routine	n-Hexane	800	lb	Emissions Model
TK-1	1	TK-1W	TK-1	Routine	Toluene	80	lb	Emissions Model
TK-1	1	TK-1W	TK-1	Routine	VOC, Total	3	tons	Emissions Model
TK-1	1	TK-1W	TK-1	Routine	Xylene (mixed isomers)	145	lb	Emissions Model
TK-1	1	TK-1S	TK-1	Routine	Ethyl benzene	15	lb	Emissions Model
TK-1	1	TK-1S	TK-1	Routine	Naphthalene (and Methylnaphthalenes)	1	lb	Emissions Model
) TK-1	1	TK-1S	TK-1	Routine	n-Hexane	400	lb	Emissions Model
1 TK-1	1	TK-1S	TK-1	Routine	Toluene	45	lb	Emissions Model
TK-1	1	TK-1S	TK-1	Routine	VOC, Total	2	tons	Emissions Model
TK-1	1	TK-1S	TK-1	Routine	Xylene (mixed isomers)	80	lb	Emissions Model
TK-2	2 1	TK-2W	TK-2	Routine	2,2,4-Trimethylpentane	18	lb	Emissions Model
TK-2	2 1	TK-2W	TK-2	Routine	Benzene	2	lb	Emissions Model
TK-2	2 1	TK-2W	TK-2	Routine	Ethyl benzene	2	lb	Emissions Model
TK-2	2 1	TK-2W	TK-2	Routine	Naphthalene (and Methylnaphthalenes)	1	lb	Emissions Model
TK-2	2 1	TK-2W	TK-2	Routine	n-Hexane	1	lb	Emissions Model
TK-2	2 1	TK-2W	TK-2	Routine	Toluene	8	lb	Emissions Model
) TK-2	2 1	TK-2W	TK-2	Routine	VOC, Total	0.5	tons	Emissions Model
TK-2		TK-2W	TK-2	Routine	Xylene (mixed isomers)	9	lb	Emissions Model
TK-2			TK-2	Routine	2,2,4-Trimethylpentane	100		Emissions Model
TK-2			TK-2	Routine	Benzene		lb	Emissions Model
TK-2			TK-2	Routine	Ethyl benzene		lb	Emissions Model
TK-2			TK-2	Routine	Naphthalene (and Methylnaphthalenes)		lb	Emissions Model
5 TK-2			TK-2	Routine	n-Hexane		lb	Emissions Model
7 TK-2			TK-2	Routine	Toluene		lb	Emissions Model
3 TK-2			TK-2	Routine	VOC. Total		tons	Emissions Model
						-		

Question and Answer

Eric Rucinski Eric.Rucinski@emsi-air.com 225-400-3861

Matthew Arseneaux Matt.Arseneaux@valero.com 985-764-5596

