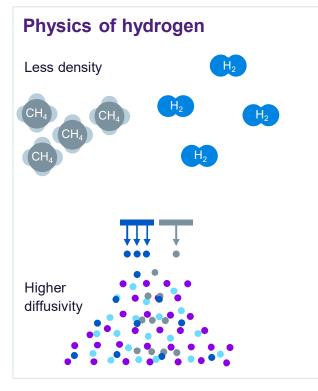

Hydrogen Combustion in Gas Turbines

Status, Challenges & Concerns

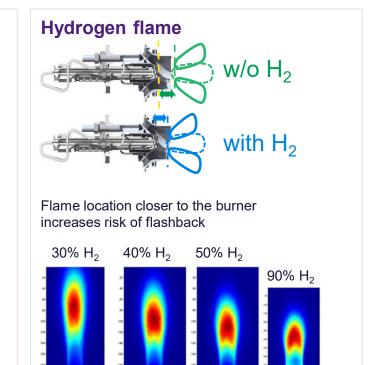
2023 A&WMA Louisiana Section Annual Conference October 26, 2023

Hydrogen combustion in gas turbines enables CO₂ free power **SIEMENS** production to compensate volatility of renewable energy sources COCIEY



Siemens Energy is a trademark licensed by Siemens AG.

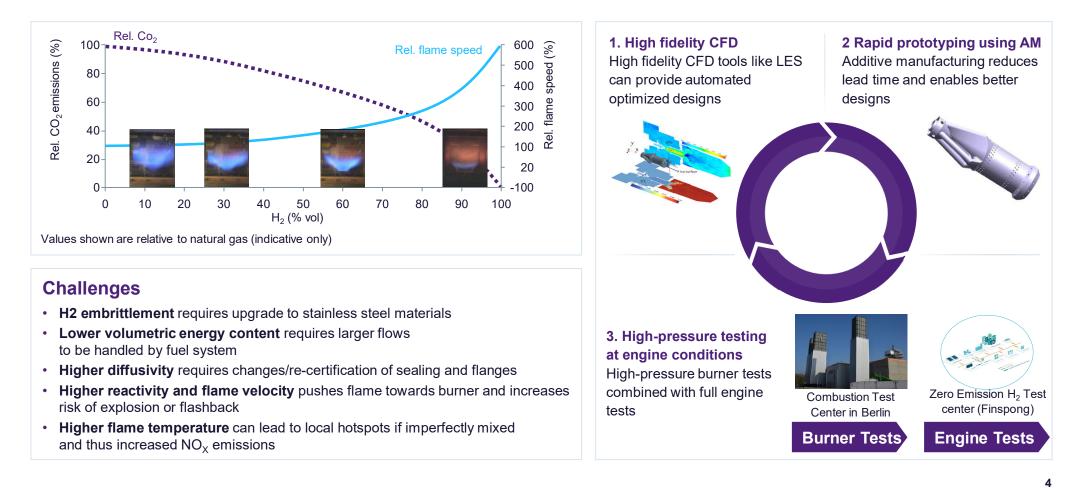
Not to be shared without explicit written permission from Siemens Energy © Siemens Energy, 2023


How is H₂ Different from Natural Gas

Differences of hydrogen and natural gas as a fuel in gas turbines

H₂ Volume Impact on Package

- Larger fuel flows to be handled in fuel system for same energy content
- Hydrogen gas travels ~3x faster than Methane gas
 - → Flame speed ~10x faster
 - \rightarrow Explosive mixtures created quickly
 - \rightarrow Jet Momentum less coherent
 - for mixing control
 - \rightarrow Flame stabilizes further upstream
- Decreasing CO₂ with increasing H₂% admixture


SIEMENS COCIGY

3

 $\bullet H_2 \bullet CH_4 \bullet O_2 \bullet N_2$

Combustion Challenges with H₂

SIEMENS COCIGY

Not to be shared without explicit written permission from Siemens Energy © Siemens Energy, 2023

Use of Hydrogen in Gas Turbines with DLE requires extensive Combustion Technology development

Siemens Energy is a trademark licensed by Siemens AG.

Not to be shared without explicit written permission from Siemens Energy © Siemens Energy, 2023

SIEMENS

energy

Siemens Hydrogen Gas Turbines for our sustainable future – The mission is to burn 100% hydrogen

Power Output¹ H₂ Capabilities in vol. % CO₂ Reduction² [%] Gas turbine model SGT5-9000HL 595 MW Values shown are indicative 50 23% for new unit applications and SGT5-8000H 450 MW 30 11% **50Hz** depend on local conditions SGT5-4000F 329 MW 30 11% and requirements. Capability to operate on 100% natural SGT5-2000E 187 MW 30 11% gas is maintained (full fuel SGT6-9000HL 440 MW 50 23% flexibility). Some operating SGT6-8000H 310 MW 30 11% 60Hz restrictions/special hardware SGT6-5000F 215 to 260 MW 30 and package modifications 11% may apply. SGT6-2000E 117 MW 30 11% SGT-800 48 to 62 MW 75 47% 40 SGT-750 40/34 to 41 MW 17% **Higher H**₂ contents SGT-700 33/34 MW 75 47% to be discussed on 27 to 37/28 to 38 MW SGT-A35 15 100 5 / 100% a project specific **50Hz** or SGT-600 24/25 MW 75 47% basis 60Hz SGT-400 10 to 14/11 to 15 MW 10 65 3/36% SGT-300 8/8 to 9 MW 30 11% SGT-100 5/6 MW 65 30 11/36% SGT-A05 4 to 6 MW 2 15 1/5% DLE burner WLE burner Diffusion burner with unabated NOx emissions Heavy-duty gas turbines Industrial gas turbines Aeroderivative gas turbines

Siemens Energy is a trademark licensed by Siemens AG.

1 ISO, Base Load, Natural Gas; Version 5.1, May 2021 2 Compared with 100% natural gas operation

Not to be shared without explicit written permission from Siemens Energy © Siemens Energy, 2023

SIEMENS

energy

GT and Auxiliary Design Differences

Burners and combustion chamberCombustion monitoring systemFuel supply systemControl/protection systemsO&M Procedures

System/Procedures

H ₂ Volume Impact on Package			
0%	10% – 30% ¹	50% - 70% ¹	100%
	10% – 30% ¹	50% – 70% ¹	
No change	Modified burne may be require		design
n.a.	Changes requ	ired Changes rec	luired
No change	Ensure all com Stainless Stee		
No change	Additional gas	detection	
	Electrical: Gas	s Group IIC	
No change	Leak check of system after m inspections	•	
No modifications needed	Smaller mo may be req		ions

1 Percentage varies from GT model to model and emission limit requirements

Siemens Energy is a trademark licensed by Siemens AG.

Not to be shared without explicit written permission from Siemens Energy © Siemens Energy, 2023

SIEME

energy

Hydrogen experience across the portfolio

Large Gas Turbines

Medium-Size Gas Turbines

Small Industrial Gas Turbines

Aeroderivative Gas Turbines

>45 years experience on H₂by syngas combustion inIGCC projects

Up to 60% H₂ content tested in full pressure combustion tests with diffusion combustion in can-annular systems (5000F and 8000H).

Experience in annular and silo systems (2000E and 4000F) can be transferred across frames.

>10 years experience based on continuous R&D with H₂ admixture

Operation on Refinery Fuel Gas with high H_2 content.

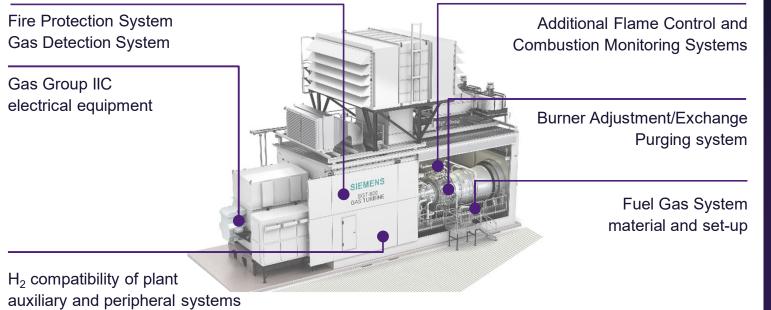
In CCPP, BACT¹ is fulfilled with Siemens DLE Hydrogen turbines, e.g., 2ppm NOx, CO, and VOC with a SCR.

≈1 MM op. hours of high hydrogen combustion experience

Operation on Refinery Fuel Gas and Coke Oven Gas with high H_2 content in conventional combustion systems.

Capability to operate on natural gas/hydrogen blends using Dry Low Emissions (DLE) combustion technology.

>100k op. hours of recorded operation on high hydrogen fuels (up to 78 vol%)


Proven operation on fuels with Wobbe Indices from 25 to 80 MJ/m³.

Extensive experience with online swings in gas fuel composition and dual fuel units are capable of online fuel transfers.

 NO_X control with water abatement.

Existing Equipment Upgrades – **Burner Adjustment/Exchange for Industrial Gas Turbines**

Main systems requiring modification when upgrading to higher H₂ content

SIEMENS energy

Consequences and solution

- · Project specific evaluation and decision on required modifications
- Power output control to ensure compliant NO_x emission levels
- Conventional/non-H₂ fuels may be required for start-up and shutdown
- Re-certification with respective authorities might be required

Existing Equipment Upgrades – Burner Adjustment/Exchange for Large Gas Turbines

Main systems requiring modification when upgrading to higher H₂ content

H₂ compatibility of plant auxiliary and peripheral systems

SIEMENS COCIGY

Consequences and solution

- Project specific evaluation and decision on required modifications
- Power output control to ensure compliant NO_X emission levels
- Conventional/non-H₂ fuels may be required for start-up and shutdown
- Re-certification with respective authorities might be required

10

Siemens Energy is a trademark licensed by Siemens AG.

2

"H₂ Ready" Plants can reduce future H₂ retrofit costs

11

- For new CCPPs not requiring immediate H₂ operation, an optimized configuration can be offered that takes future H₂ retrofit into account ("H₂ ready plants")
- While keeping front-end investments low, the plant can already be prepared to be retrofitted at a later stage with limited efforts
- Depending on H₂ co-firing time roadmap and requirements, optimized equipment configurations will be offered

Areas:	Equipment/Systems considered:
Fuel Supply:	Materials, sizing, aux. fuel, metering, additional systems
Fire/Ex Protection:	Fire/Ex protection concepts, sizing of systems
HRSG:	Materials, temperatures, purging requirements
I&C & Electrical:	Design acc. to IIC
Safety:	Safety Integrity Levels definition and design
Certification:	Certification Requirements

Not to be shared without explicit written permission from Siemens Energy © Siemens Energy, 2023

Hydrogen Production

Silyzer 300 – Full Module Array The next paradigm in PEM electrolysis

Silyzer 300

Full module array (24 modules) ...

Example: an "F" class gas turbine (~ 260 MW) operating at ISO conditions (sea level), with a 30% by volume hydrogen mix in the fuel, requires ~ 2,200 kg/hr hydrogen and hence, seven (7) Silyer 300 Modules. These modules require ~116 MW (assuming 24 hours per day operation).

Green hydrogen (in the short and medium term) makes sense mostly for use in industry, chemicals, and mobility (and even then, in some cases only with heavy incentives).

17.5 MW plant power demand

>75.5% plant efficiency

24 modules to build a full module array

12

335 kg hydrogen per hour

Siemens Energy is a trademark licensed by Siemens AG.

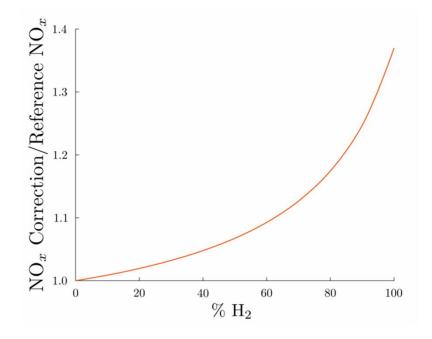
NO_X Emissions with H₂ Combustion

13

Real and 'Artificial' NO_X Emissions

- H₂ co-firing (and eventually, 100% firing) results in higher flame temperatures than those that occur when firing with natural gas and as previously noted, higher temperature combustion results in a real increase in NO_X emissions.
 - Hence, firing temperature (and therefore, power output) may need to be reduced in some cases to limit engine NO_X emissions.
 - Higher engine NO_X can be controlled with an SCR system ... to a point.
- In addition, most NO_X concentration values (e.g., ppm or mg/m³) are put on a dry, 15% O₂ basis (for an apples-to-apples comparison between sources, etc.).
 - The correction equations can result in a higher (calculated) value than what is measured.
 - This 'correction' bias becomes even larger when combusting more H₂, which requires a lower stoichiometric amount of oxygen and hence, results in more oxygen being left in the exhaust gas.

NO_X Emissions with H₂ Combustion


 The apparent, *artificial* increase in NO_X emissions can be as much as 40% (see figure to right, per Georgia Tech. Study). Example equations are as follows:

Lower H_2 :

```
25 ppmvd NO<sub>X</sub> x [ (20.9 - 15) / (20.9 - 14) ] = 21.4
```

Higher H_2 :

25 ppmvd NO_X x [(20.9 - 15) / (20.9 - 16)] = **30.1**

SIFMF

energy

14

SOURCE:

NO_x Emissions from Hydrogen-Methane Fuel Blends - GA Tech. – Jan. 2022

NO_X Emissions with H₂ Combustion

15

Alleviating the Potential Impacts of 'Artificial' NO_x Increases

- The regulatory community (e.g., USEPA, Canadian EPA, European Commission of the E.U., etc.) as well as equipment end-users (customers) must be educated.
 - SE Orlando, through membership and involvement in the Gas Turbine Association, has submitted a letter to the U.S. DOE (Dept. of Energy) and has had interactions with the USEPA on this subject.
- Perhaps the easiest way to deal with this issue is to simply <u>not</u> utilize units of concentration for NO_X (or other) emissions when combusting H₂, but to limit and report emissions based on mass flow:
 - Mass per time: g/sec, kg/hr, lb/hr, etc. and/or
 - Mass per energy output or input: g/kWh, lb/MWh, kg/GJ, lb/MMBtu, etc.

QUESTIONS?

Jordan M. Haywood, MS, PE, QEP – Discipline Expert (Emissions/Controls) North America, Central America, Latin America (Orlando Office) jordan.haywood@siemens-energy.com