

trinityconsultants.com

Using MERPs Guidance for Ozone and PM_{2.5} Permitting

Louisiana A&WMA Annual Conference

16 October 2019 Christine Haman, PhD - Senior Consultant Shreyas Erapalli, Managing Consultant

Presentation Outline

- > Context for Secondary Pollutants
- > Tier 1 and Tier 2 Overview
- > MERPs Introduction
- > Example 1: Secondary Ozone
- > Example 2: Primary and Secondary PM_{2.5}
- > Class I Refinements
- > Key Considerations

Context for Secondary Pollutants

When to assess secondary impacts?

Ozone:

Pursuant to 40 CFR 52.21, a proposed project with a project increase of VOC <u>or</u> NO_X emissions in excess of 100 tpy triggers an ambient ozone impact analysis for the project.

Secondary PM_{2.5}: Combination of...

- 1. Project direct PM_{2.5} emissions compared to SER and
- 2. Project SO₂ and NOx emissions compared to respective SERs

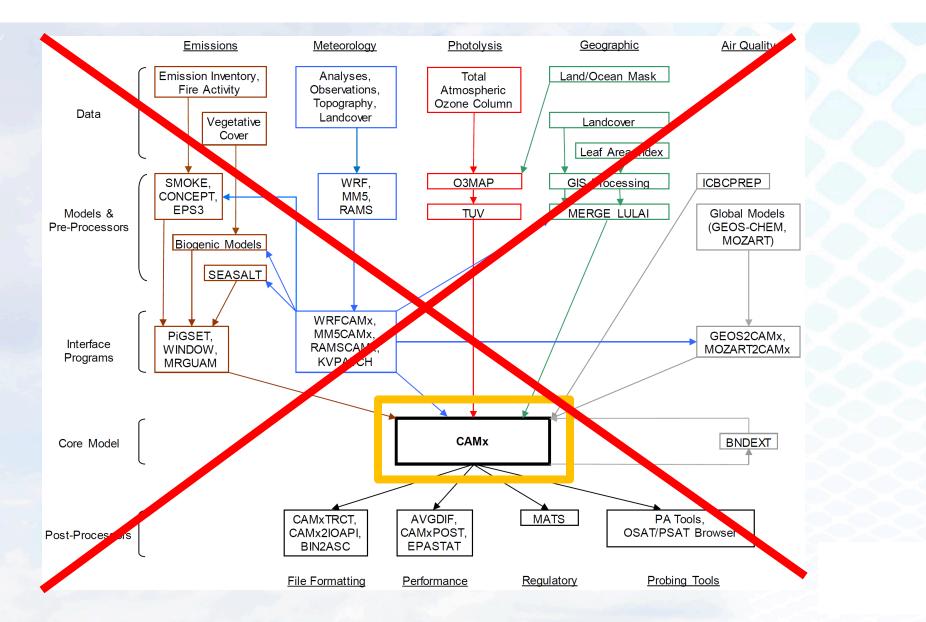
Tier 1 and Tier 2 Overview

Guideline on Air Quality Models

Estimating single-source impacts on ozone and secondary PM_{2.5}:

Tier 1

Technically credible relationships between emissions and ambient impacts


Existing modeling results or studies deemed sufficient

Tier 2

Case-specific application of chemical transport modeling

Anticipates <u>few</u> situations where a Tier 2 demonstration would be necessary

Avoid Tier 2

Tier 1 Demonstrations

Use existing empirical relationships between precursors and secondary impacts based on modeling systems

<u>MERPs</u> \rightarrow tool under PSD permitting program: provides a simple way to relate maximum downwind impacts with a critical air quality threshold

> <u>PSD</u> → separate MERPs developed to relate: VOCs and/or NOx → O_3 SO₂ and/or NOx → secondary PM_{2.5}

MERPs Introduction

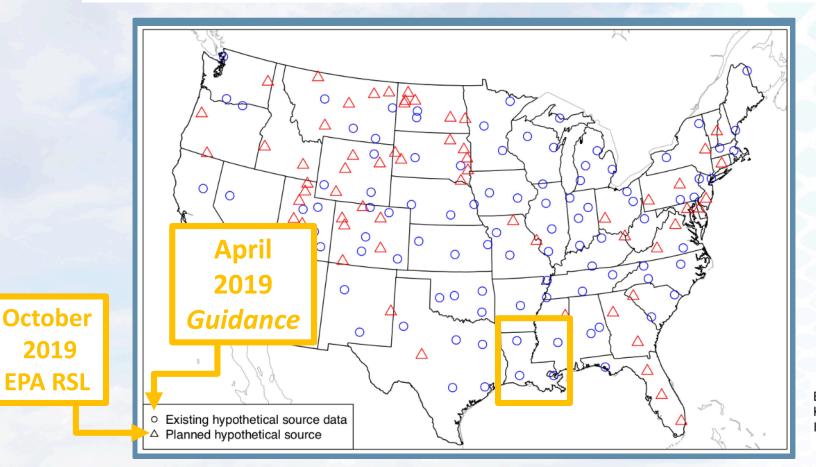
EPA MERPs Guidance - SCRAM

Guidance on the Development of Modeled Emission Rates for Precursors (MERPs) as a Tier 1 Demonstration Tool for Ozone and PM2.5 under the PSD Permitting Program (74 pp, 3.1 MB About PDF) -April 2 EPA 454/R-19-003. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards. 2019

 A <u>spreadsheet</u> (224 KB) with the underlying maximum impact and MERPs information for eacl hypothetical source

	$\rightarrow \cdots \rightarrow$	Annua	I PM2.5 S	5O2 [Daily PM2	2.5 SO2	Annual I	PM2.5 NO	DX D	aily PM2.	5 NOX	MDA8	03 VOC	MDA	48 O3 NC	x	\oplus	
-	A	B	C	D	E	F	G	Н	1	J	ĸ	L	M	N	0	Р	Q	R
1	METRIC 🔄	PRECURSOR	POLL 💌	State 🖵	County 💌	FIPS 💌	EMISSIONS 🔻	STACKI -	CONC 💌	MERP 💌	LATITU(💌	LONGIT	CZ 💌	CZNAM -	terravg 🔻	urbmax 🔻	DOMAIN	▼ SOURCI ▼
110	MDA8	VOC	OZONE	Louisiana	Acadia	22001	500	10	0.114	4378	30.2409	-92.6165	6	South	6	6.5	12EUS2	15
111	MDA8	VOC	OZONE	Louisiana	Acadia	22001	1000	10	0.247	4050	30.2409	-92.6165	6	South	6	6.5	12EUS2	15
112	MDA8	VOC	OZONE	Louisiana	Acadia	22001	1000	90	0.222	4502	30.2409	-92.6165	6	South	6	6.5	12EUS2	15
113	MDA8	VOC	OZONE	Louisiana	Acadia	22001	3000	90	0.992	3024	30.2409	-92.6165	6	South	6	6.5	12EUS2	15
114	MDA8	VOC	OZONE	Louisiana	Lincoln	22061	500	10	0.043	11551	32.4762	-92.7109	6	South	68	5.8	12EUS2	14
115	MDA8	VOC	OZONE	Louisiana	Lincoln	22061	1000	10	0.087	11520	32.4762	-92.7109	6	South	68	5.8	12EUS2	14
116	MDA8	VOC	OZONE	Louisiana	Lincoln	22061	1000	90	0.089	11254	32.4762	-92.7109	6	South	68	5.8	12EUS2	14
117	MDA8	VOC	OZONE	Louisiana	Lincoln	22061	3000	90	0.274	10969	32.4762	-92.7109	6	South	68	5.8	12EUS2	14
118	MDA8	VOC	OZONE	Louisiana	Orleans	22071	500	10	0.201	2491	30.0919	-89.879	6	South	1	50.4	12EUS2	10
119	MDA8	VOC	OZONE	Louisiana	Orleans	22071	1000	10	0.415	2410	30.0919	-89.879	6	South	1	50.4	12EUS2	10
120	MDA8	VOC	OZONE	Louisiana	Orleans	22071	1000	90	0.382	2618	30.0919	-89.879	6	South	1	50.4	12EUS2	10
121	MDA8	VOC	OZONE	Louisiana	Orleans	22071	3000	90	1.294	2319	30.0919	-89.879	6	South	1	50.4	12EUS2	10

MERPs: Secondary Formation Tool

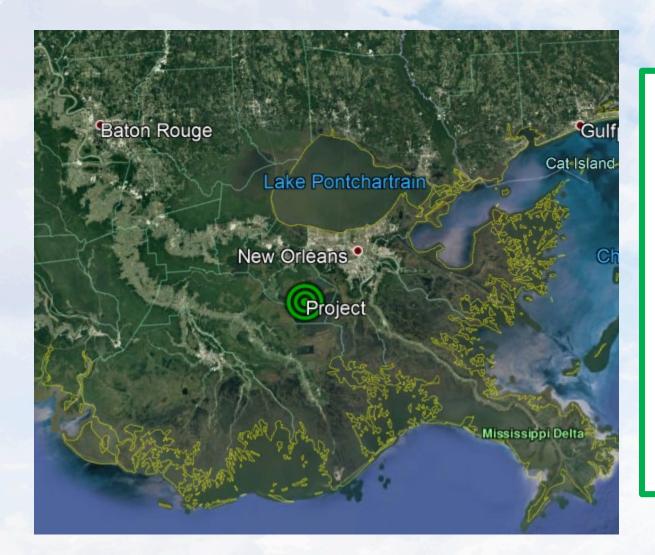

Potential way of evaluating secondary impacts of $PM_{2.5}$ and Ozone

<u>MERPs</u> → an annual tpy precursor emission rate from a hypothetical evaluated source (in photochemical modeling) that corresponds to an air quality impact at the level of the SIL.

<u>Example</u> \rightarrow An SO₂ MERP for the daily PM_{2.5} standard is calculated to be 367 tons. This means that if the PSD source emits 367 tpy, the daily PM_{2.5} impact resulting from the SO₂ emissions would be at the level of the SIL (1.2 µg/m³).

Hypothetical Sources

EPA provided guidance MERP values for numerous hypothetical sources, evaluated by region.



Baker et al, 2016 Kelly et al, 2015 IWAQM3-NFI Report

Example 1

Ambient Ozone Impacts

VOC = 485 tpy

NOx = 510 tpy

Surface Level Release

STEP 1: Use lowest illustrative MERP from the South Climate Zone

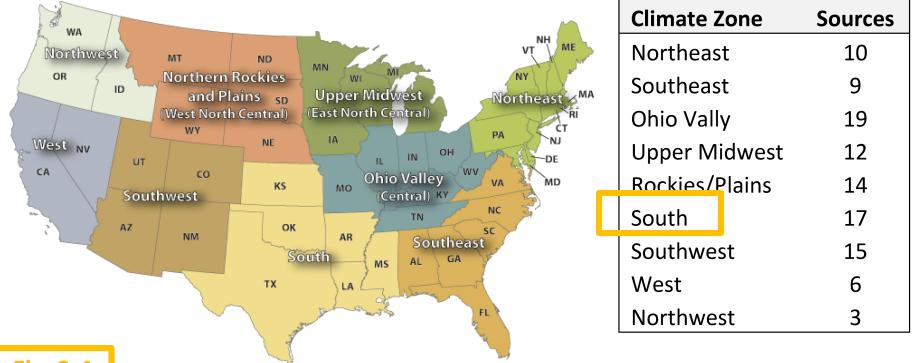
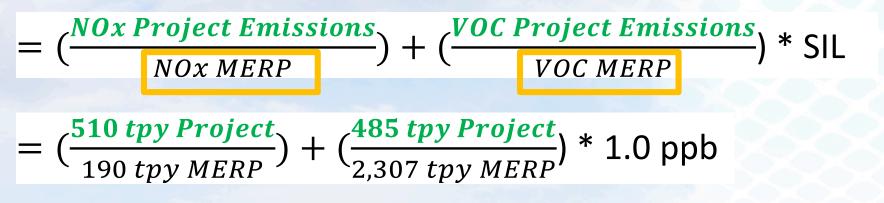


Fig. 3-4

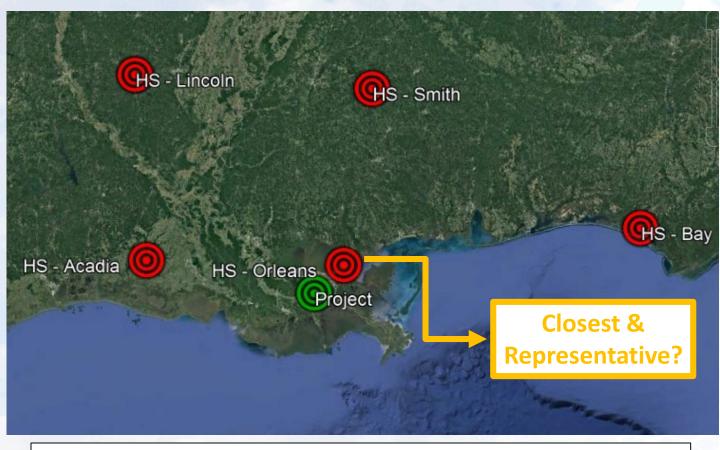

STEP 1: Use lowest illustrative MERP from the South Climate Zone

	8-h	r O ₃ from N	NO _X	8-hr O ₃ from VOC			
Climate Zone	Lowest	Median	Highest	Lowest	Median	Highest	
Northeast	209	495	5,773	2,068	3,887	15,616	
Southeast	170	272	659	1,936	7,896	42,964	
Ohio Valley	126	340	1,346	1,159	3,802	13,595	
Upper Midwest	125	362	4,775	1,560	2,153	30,857	
Rockies/Plains	184	400	3,860	1,067	2,425	12,788	
South	190	417	1,075	2,307	4,759	30,381	
Southwest	204	422	1,179	1,097	10,030	144,744	
West	218	429	936	1,094	1,681	17,086	
Northwest	199	373	4,031	1,049	2,399	15,929	

Table 4-1

STEP 1: Use lowest illustrative MERP from the South Climate Zone

Project Impact in <mark>ppb</mark>...



= 2.89 *ppb*

2.89 *ppb* > 1.0 *ppb Ozone SIL*

STEP 2: Select lowest MERP from nearby sources with similar stack height

Assume > 1.0 ppb Ozone SIL

STEP 3: Select most representative nearby source for similar scenario

Nearby local and regional sources of pollutants and their emissions Rural/urban nature of the area and terrain features

Assess Comparability

Ambient concentrations of relevant pollutants where available Average/peak temperatures and humidity

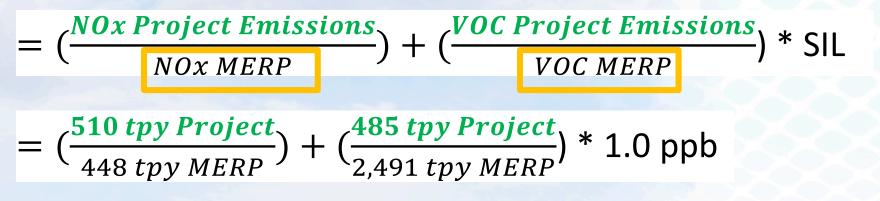
STEP 3: Select most representative nearby source for similar scenario

Orleans Hypothetical Source - VOC

l	Emissions (tpy)	Stack Height (m)	Concentration (ppb)	MERP (tpy)
	500	10	0.201	2,491
	1,000	10	0.415	2,410
	1,000	90	0.382	2,618
	3,000	90	1.294	2,319

April 2019 MS Excel Spreadsheet

STEP 3: Select most representative nearby source for similar scenario


Orleans Hypothetical Source – NOx

Emissions (tpy)	Stack Height (m)	Concentration (ppb)	MERP (tpy)
500	10	1.116	448
500	90	1.332	375
1,000	90	2.480	403
3,000	90	6.017	499

April 2019 MS Excel Spreadsheet

STEP 3: Select most representative nearby source for similar scenario

Project Impact in <mark>ppb</mark>...

= 1.33 *ppb*

1. **33** *ppb* > **1**. **0** *ppb Ozone SIL*

STEP 3: Select most representative nearby source for similar scenario

In this case, based on EPA modeling results for a representative hypothetical source, air quality impacts of O₃ from this project source <u>would be expected to exceed</u> the EPA recommended 8-hour O₃ SIL.

STEP 3: Select most representative nearby source for similar scenario

Projected Design Value with Project in ppb...

= Project Impact + Monitored Design Value

 $= 1.33 \, ppb + 65 \, ppb$

= 66.33 *ppb*

66. **33** *ppb* < **70** *ppb Ozone NAAQS*

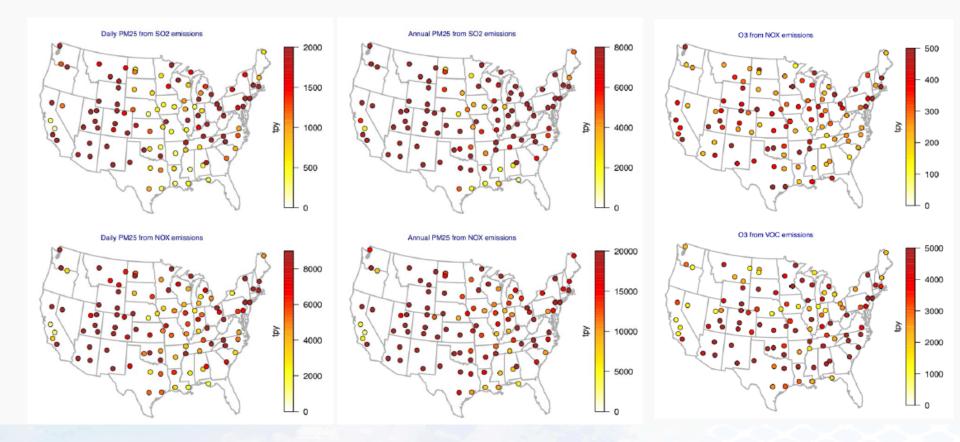
Secondary PM_{2.5}

Previous Secondary PM_{2.5} Guidance

May 20, 2014 Guidance for PM_{2.5} Permit Modeling

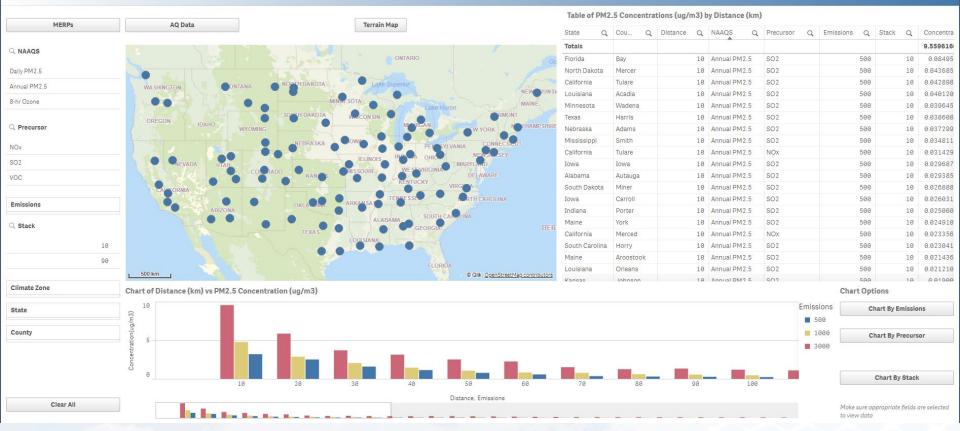
Assessment Case	Description of Assessment Case	Primary Impacts Approach	Secondary Impacts Approach
Case 1: No Air Quality Analysis	Direct PM2.5 emiss 0 tpy SER NOx and SO2 epi py SER	N/A	N/A
Case 2: Primary Air Quality Impacts Only	Direct PM2.5 c NOx and SO2 emb	referred or red alternative spersion model	N/A
Case 3: Primary and Secondary Air Quality Impacts	Direct PM2.5 emissi NOx and/or SO2 er	endix W preferred or coved alternative rsion model	 Qualitative Hybrid qualitative / quantitative Full quantitative photochemical grid modeling
Case 4: Secondary Air Quality Impacts Only	Direct PM2.5 emissions < 10 tpy SER NOx and/or SO2 emissions ≥ 40 tpy SER	N/A	 Qualitative Hybrid qualitative / quantitative Full quantitative photochemical grid modeling

Recent Secondary PM_{2.5} Guidance

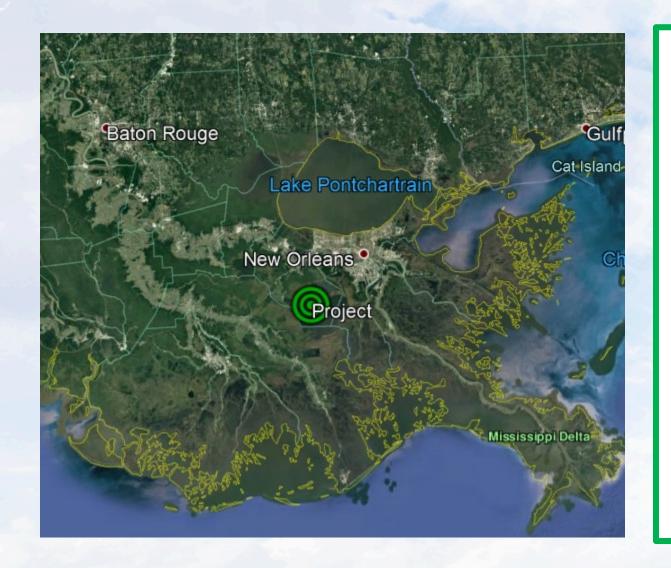

> Either assess fully for PM_{2.5} or not at all

Assessment Case	Description of Assessment Case	Primary Impacts Approach	Secondary Impacts Approach
Case 1: No Air Quality Analysis	Direct PM2.5 emissions < 10 tpy SER Both NOx and SO2 emissions < 40 tpy SER	N/A	N/A
Case 2: PM2.5 Assessment (Primary and Secondary Air Quality Impacts)	Direct PM2.5 emissions ≥ 10 tpy SER or NOx and/or SO2 emissions ≥ 40 tpy SER	Appendix W preferred or approved alternative dispersion model	 Tier 1 Approach (e.g., MERPs) Tier 2 Approach (Chemical Transport Modeling) Qualitative (Very Rare Situation)

* "Ozone and $PM_{2.5}$ Permit Modeling Guidance", presented June 5, 2018 at EPA RSL Modeler's Workshop, Boston, MA.

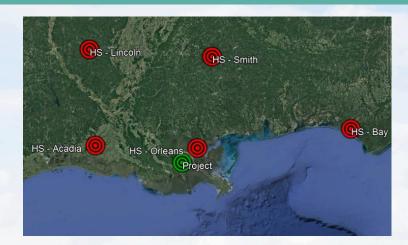

Irinity/

Different Data for PM_{2.5} vs O₃ Illustrative MERPs for PM2.5 and O3


MERPS View

Refined PM2.5 Data by Distance

Example 2


 $SO_2 =$ 100 tpy NOx = 510 tpy $PM_{2.5} =$ **25 tpy Primary PM_{2.5}** 24hr Model = **0.7 μg/m³**

STEP 1: Use lowest illustrative MERP from the South Climate Zone

Primary + Secondary PM_{2 5} > **1**. 2 $\mu g/m^3 SIL$

STEP 2: Select most representative nearby source for similar scenario

STEP 3: Select most representative nearby source for similar scenario

Orleans Hypothetical Source - NO_x

Emissions (tpy)	Stack Height (m)	Concentration $(\mu g/m^3)$	MERP (tpy)
500	10	0.261	2,300
1,000	10	0.638	1,881
1,000	90	0.288	4,161
3,000	90	0.996	3,616

April 2019 MS Excel Spreadsheet

STEP 3: Select most representative nearby source for similar scenario

Orleans Hypothetical Source – SO₂

Emissions (tpy)	Stack Height (m)	Concentration $(\mu g/m^3)$	MERP (tpy)
500	10	0.699	859
1,000	10	2.622	458
1,000	90	1.02	1,176
3,000	90	5.216	690

April 2019 MS Excel Spreadsheet

STEP 3: Select most representative nearby source for similar scenario

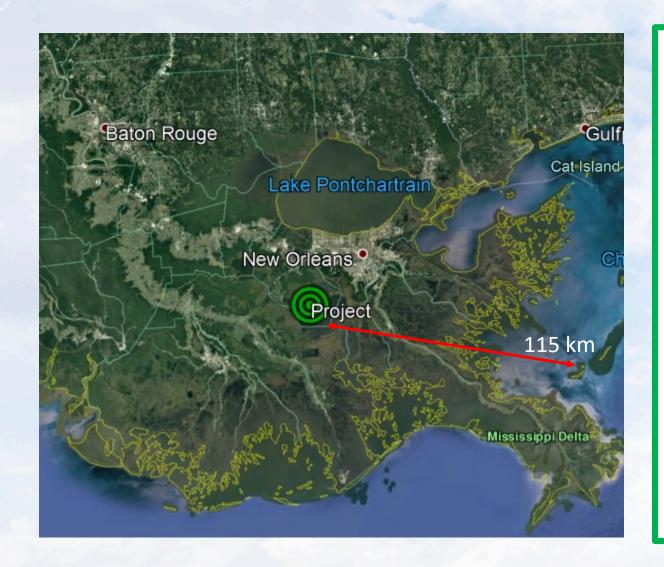
Secondary 24hr PM_{2.5}

= Project NOx Emissions * $\left(\frac{NOx Hypo. Source Modeled Impact \left(\frac{\mu g}{m^3}\right)}{NOx Hypo. Source Emissions}\right)$

+ Project SO₂ Emissions * $\left(\frac{SO_2 Hypo. Source Modeled Impact \left(\frac{\mu g}{m^3}\right)}{SO_2 Hypo. Source Emissions}\right)$

$$= 510 * \left(\frac{\mathbf{0.261}\left(\frac{\mu g}{m^3}\right)}{500 \ tpy}\right) + 100 * \left(\frac{\mathbf{0.699}\left(\frac{\mu g}{m^3}\right)}{500 \ tpy}\right)$$

 $= 0.41 \, \mu g/m^3$


Primary + Secondary PM_{2.5} Impacts 1.11 μ g/m^3 < 1.2 μ g/m^3 PM_{2.5} SIL

What if Primary + Secondary PM_{2.5} Impacts > SIL

Class I Refinements?

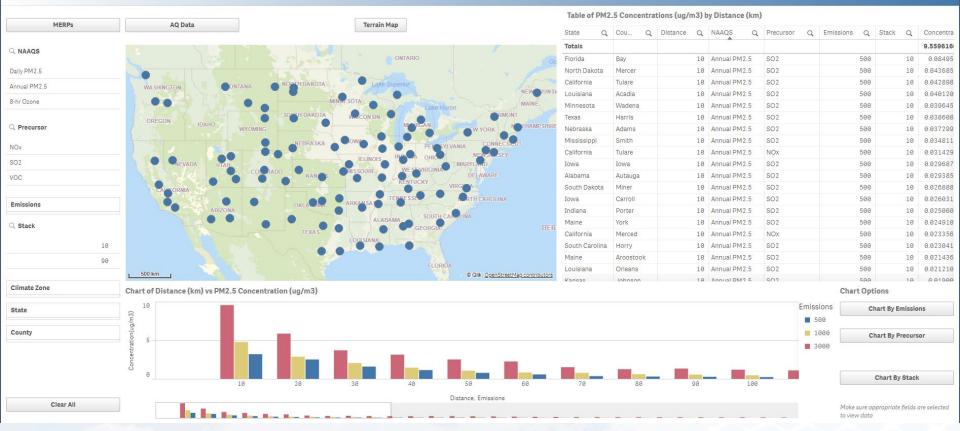
Class I Impacts

Distance to nearest Class I area ~70 miles ~115 km

Class II PM_{2.5} SIL= <u>1.2 μ g/m³</u>

Class I PM_{2.5} SIL= <u>0.27 μg/m³</u>

Class I Refinements


Table A-1. Daily 24-hour and annual average PM_{2.5} impacts from NO_X and SO₂ sources from CUS hypothetical source 10: Orleans, Louisiana

		Distance	Maximun	n 24-hr Impac	:t (µg/m3)	Maximum	Annual Impa	ct (µg/m3)
Precursor	Stack	Distance (km)	E	missions (tp	()	E	missions (tp	1)
		(KIII)	500	1000	3000	500	1000	3000
NOx	н	≥50	0.0511	0.1053	0.3452	0.0013	0.0026	0.0088
NOx	L	≥50	0.0891	0.1836		0.0021	0.0049	
SO ₂	н	≥50	0.1455	0.2733	1.1161	0.0050	0.0099	0.0389
SO ₂	L	≥50	0.1667	0.3363		0.0062	0.0136	

		Distance	24-ł	nr Impact (μg,	/m3)	Annu	Ial Impact (με	;/m3)
Precursor	Stack	Distance (km)	E	Emissions (tpy	()	E	missions (tpy	<i>ı</i>)
		(KIII)	500	1000	3000	500	al Impact (µg, missions (tpy) 1000 0.0059 0.0043 0.0029 0.0024 0.0023 0.0025 0.0026 0.0024 0.0024 0.0024 0.0025	3000
NOx	н	10	0.1179	0.2884	0.9955	0.0024	0.0059	0.0239
NOx	н	20	0.0604	0.1514	0.6421	0.0020	0.0043	0.0158
NOx	н	30	0.0690	0.1442	0.4540	0.0016	0.0034	0.0130
NOx	н	40	0.0538	0.1092	0.3384	0.0014	0.0029	0.0111
NOx	н	50	0.0295	0.0614	0.2257	0.0011	0.0024	0.0090
NOx	н	60	0.0322	0.0662	0.2170	0.0011	0.0023	0.0083
NOx	н	70	0.0311	0.0636	0.2079	0.0012	0.0025	0.0086
NOx	н	80	0.0380	0.0776	0.2500	0.0013	0.0026	0.0081
NOx	н	90	0.0433	0.0885	0.2829	0.0012	0.0024	0.0073
NOx	н	100	0.0451	0.0924	0.2971	0.0012	0.0025	0.0075

MERPS View

Refined PM2.5 Data by Distance

Key Considerations

Key Considerations

- Model PM_{2.5} even if not triggering PSD for direct PM_{2.5}
- > Evaluate NO_X and SO₂ even if project does not trigger PSD for these pollutants
- > Which sources should be modeled?
 - Project-affected only vs. project-affected plus contemporaneous sources
 - What if contemporaneous sources are different for primary vs. precursor emissions?
 - Contemporaneous increases already accounted for in background monitor concentration?
 - Fugitive Sources (Road emissions, cooling towers, storage piles etc.)

Key Considerations

> SILs for Class I areas

- Stringent Thresholds
- Distance-dependent secondary PM2.5 refinements
- Some additional time and effort is added to project scope (Tier 1 vs Tier 2?)
- > PSD Applicability Impact?
- > Agency Review Time?

Thank you for your attention.

serapalli@trinityconsultants.com | chaman@trinityconsultants.com