Air Dispersion Modeling Challenges in Demonstrating Compliance with PM_{2.5} and NO₂ NAAQS in Louisiana

Presented at:

Louisiana Section A&WMA Meeting October 29th, 2015

Presented by
Arijit Pakrasi, Ph.D., P.E., BCEE
Chris Howard, P.E.
CB&I Facilities & Plant Services Group

Topics

NSR Permitting Process

 Modeling Challenges for Short-term NAAQS

State-Specific Permitting Issues

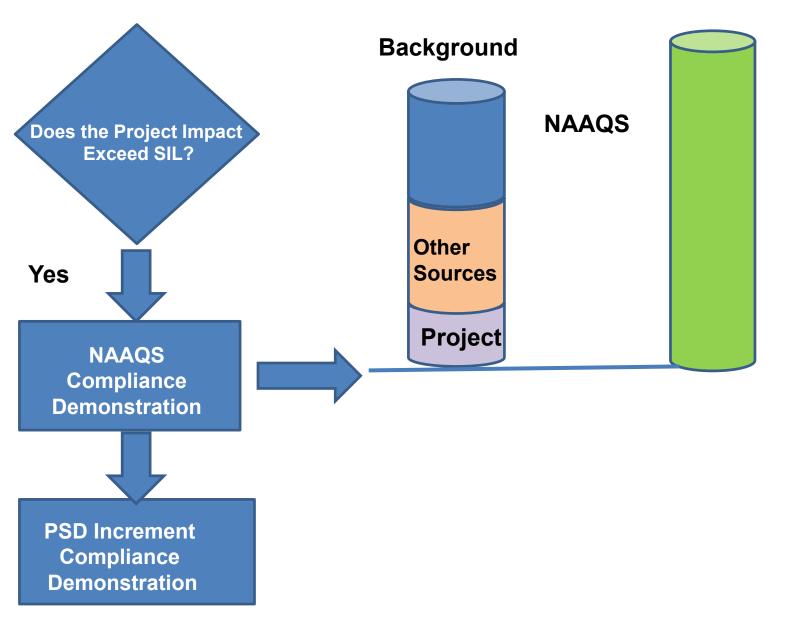
Conclusions

NSR Permitting Process

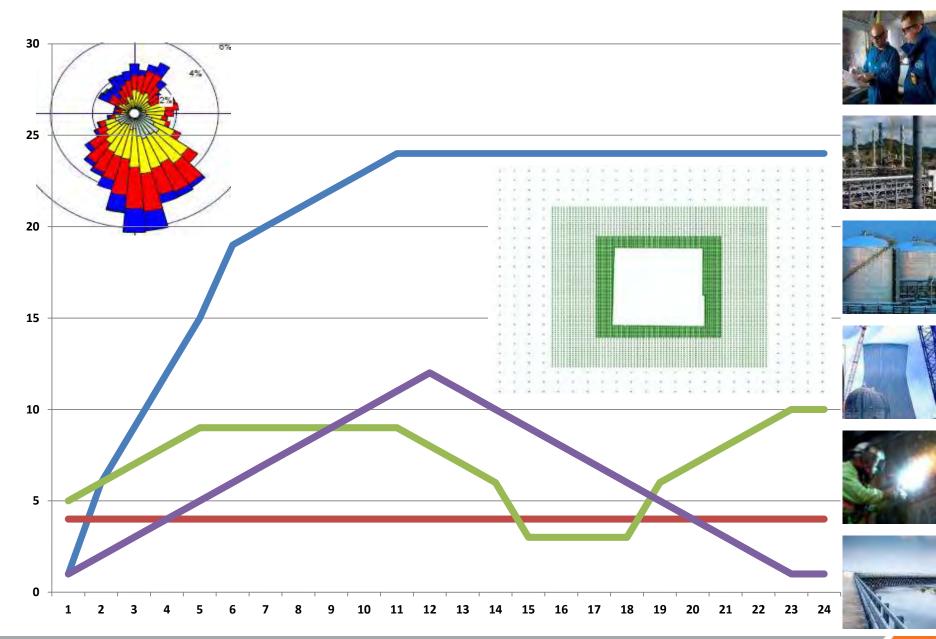
NSR Permitting Process

NSR Permitting Basics

- Major Sources and modifications require NSR permits
- For any NSR permitting in attainment areas, NAAQS Compliance
 Demonstration and PSD Increment
 Compliance Demonstration are critical requirements for permit approval
- Air Dispersion Modeling is used for both demonstrations



NSR Modeling Basics



Concept of 1-hour NO2 NAAQS

Concept of 1-hour NO2 NAAQS

0.06	
0.05	Daily 1-hr Max 98 th Percentile
0.04	
0.03	
0.02	
0.01 -	
0	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Design Background Concentration (ppm)				
2012	0.033			
2013	0.035			
2014	0.034			
Average	0.0340			

Meeting Challenges for Short Term NAAQS

Modeling Challenges for Short Term NAAQS

Modeling Challenges – Short Term Statistical Standards

Short Term Emission Profiles

Start-up/Shutdowns and cycling operations

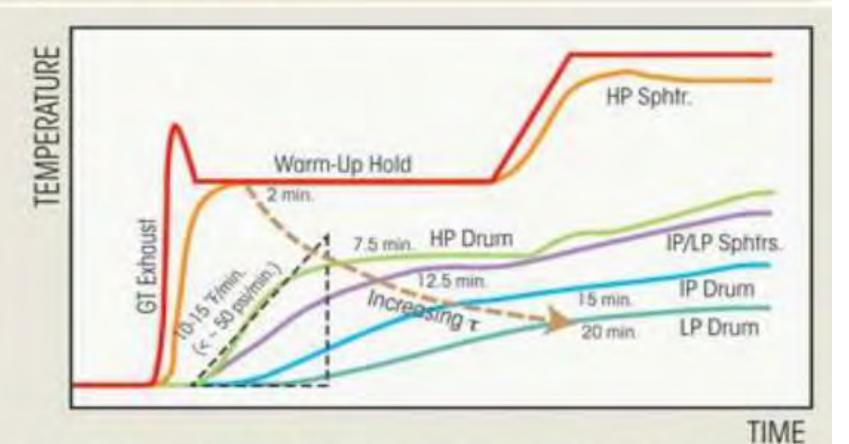
Cumulative Modeling Data Availability

– How complete is the data?

Representative Background Concentration

 Is the ambient air monitoring data representative of the air quality near the proposed facility

Short Term Emission Profile



Short Term Emission Profile

Short Term Emission Profiles

Dynamic Response of Selected HRSG Heat Exchanger Sections

Representative of a single-shaft GTCC cold start (total time of about three hours).

Short Term Emission Profiles

			NOx Emissions			
Minute	GT Condition	GT Load	Uncontrolled	Uncontrolled	Control	Controlled
wiiiute	G1 Condition	GI LOAU	(Lb/Hr)	(Lbs)/min	Efficiency	(Lbs/min)
1	0 to 20% Load Ramp Up	0.0%	10.000	0.17	0%	0.17
2	0 to 20% Load Ramp Up	10.0%	10.000	0.17	0%	0.17
3	0 to 20% Load Ramp Up	20.0%	11.000	0.18	0%	0.18
4	Low Speed Hold	20.0%	14.000	0.23	0%	0.23
5	Low Speed Hold	20.0%	15.000	0.25	0%	0.25
6	Low Speed Hold	20.0%	16.000	0.27	0%	0.27
7	High Speed Hold	20.0%	25.000	0.42	0%	0.42
8	High Speed Hold	20.0%	30.000	0.50	0%	0.50
9	High Speed Hold	20.0%	35.000	0.58	0%	0.58
10	High Speed Hold	20.0%	40.000	0.67	0%	0.67
11	High Speed Hold	20.0%	60.000	1.00	0%	1.00
12	Op Mode 1	20.0%	70.000	1.17	0%	1.17
13	Op Mode 1	20.0%	70.000	1.17	0%	1.17
14	Op Mode 1	20%	70.000	1.17	0%	1.17
15	Op Mode 1	20%	70.000	1.17	0%	1.17
16	Op Mode 1	20%	70.000	1.17	50%	0.58
17	Ramp to Op Mode 2	20%	80.000	1.33	50%	0.67
18	Ramp to Op Mode 2	20%	90.000	1.50	90%	0.15
19	Op Mode 2	20%	100.000	1.67	90%	0.17
20	OP Mode 2	20%	100.000	1.67	90%	0.17
			Averaged Hourly Emissions			
			Maximum Hourly Emissions			

Data Availability for Cumulative Modeling

Data Availability for Cumulative Modeling

Cumulative Modeling Data Availability

- NAAQS modeling require <u>"other" sources</u> within AQL + 50 KM
- Data from EDMS is <u>not directly usable</u> for modeling
- Typical Issues are <u>lack of emission data and</u> <u>stack parameters</u>
- Some data are <u>questionable</u>
- Need to <u>be careful in selection of modeling</u> parameters for "other" sources

Cumulative Modeling Data Availability

Missing Days we stay	Sum of Missing		
Missing Parameter	Parameters		
Diameter	339		
Discharge Area	1,940		
Exit Gas Flow Rate	391		
Exit Gas Temperature	272		
Exit Gas Velocity	382		
Height	255		
Hours of Operation (hours/yr)	8		
Max Operating Rate	277		
Normal Operating Rate	308		
Grand Total	4,172		

A Recent Case Study

Representative Background Concentration

Representative Background Concentration

Background Concentration

USEPA Definition

"Air contaminant concentrations present in the ambient air that are

not attributed to the source or site being evaluated."

(Ref: 50 CFR 51 Appendix W)

EPA Description of Background Concentration

"Background air quality includes pollutant concentrations due to <u>natural sources</u>, <u>nearby</u> <u>sources</u> other than the one(s) under consideration, and <u>unidentified sources</u>."

(Ref: 50 CFR 51 Appendix W)

Ambient Monitoring Data Requirements for NSR

Availability:

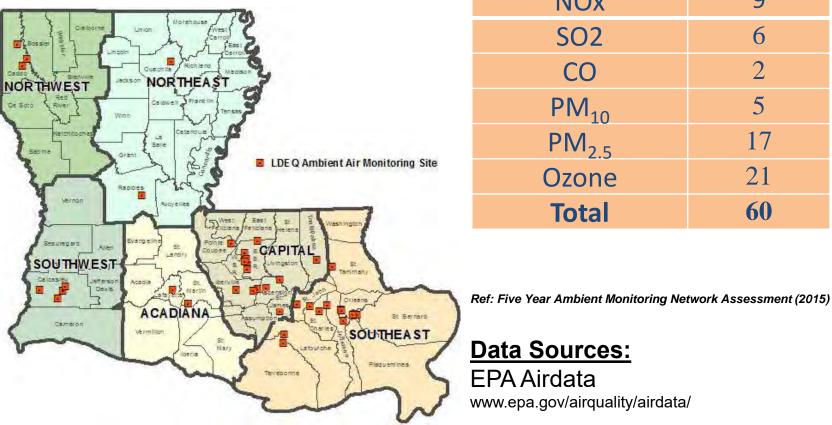
Is the ambient air monitoring data available near the proposed project? If not then what do you do?

Validity:

Is the available ambient air monitoring data is of acceptable quality? How to determine?

Representativeness:

- Is the ambient air monitoring data representative of the air quality near the proposed facility?



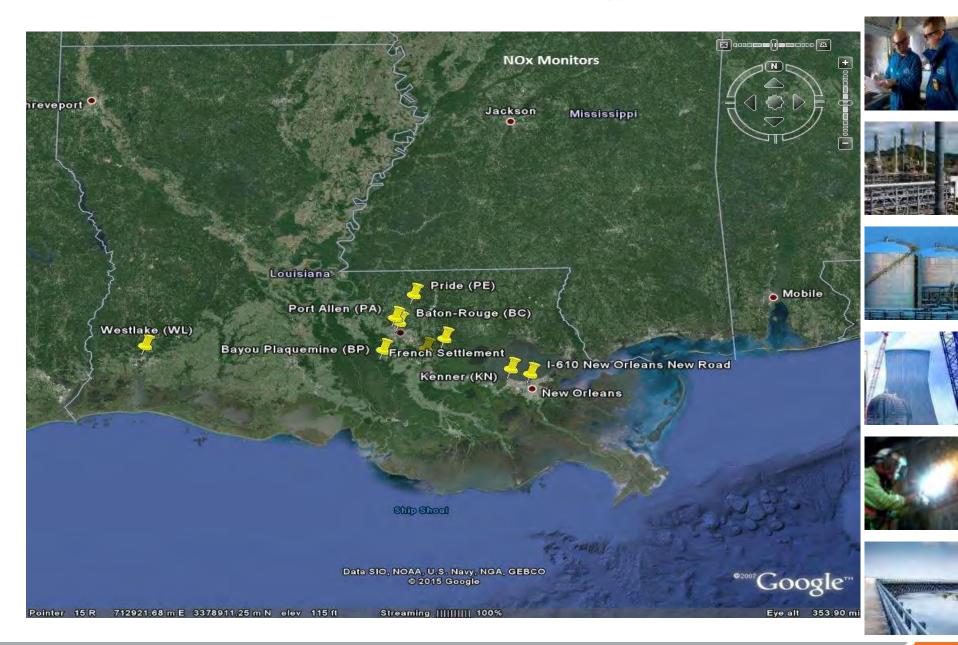
EPA & LDEQ Ambient Monitoring network

Monitoring Data Since 90's

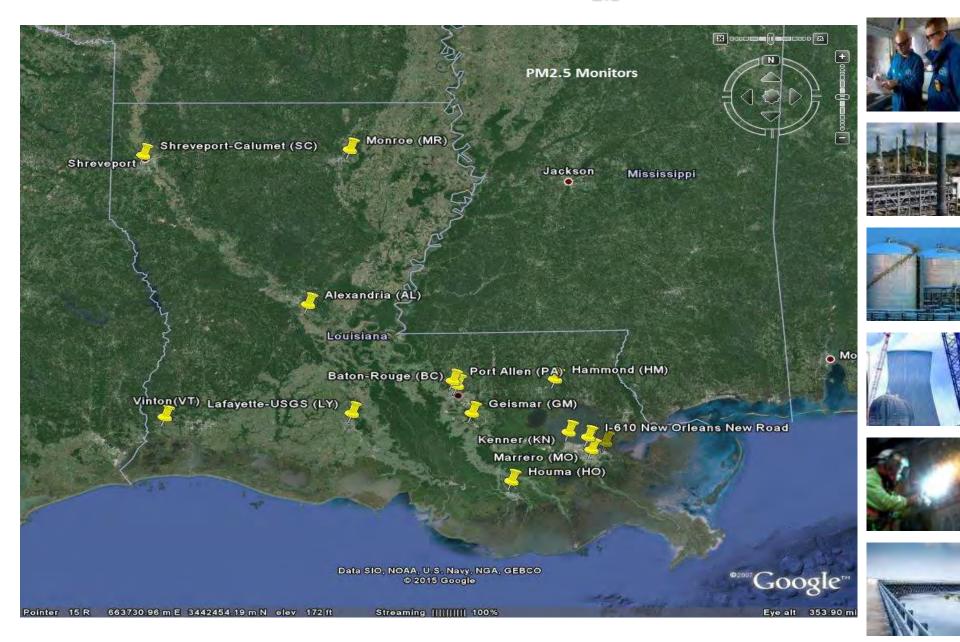
NOx	9
SO2	6
СО	2
PM ₁₀	5
PM _{2.5}	17
Ozone	21
Total	60

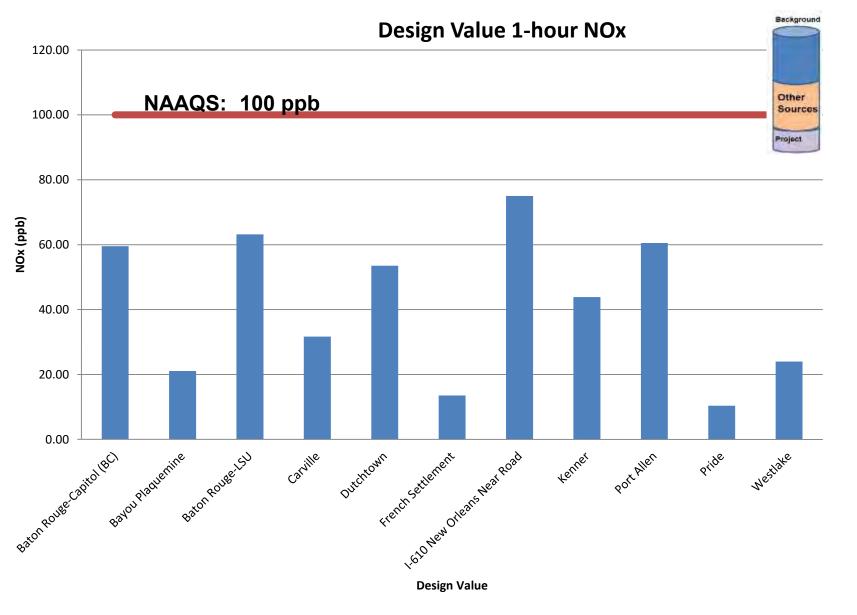
Data Sources:

EPA Airdata


www.epa.gov/airquality/airdata/

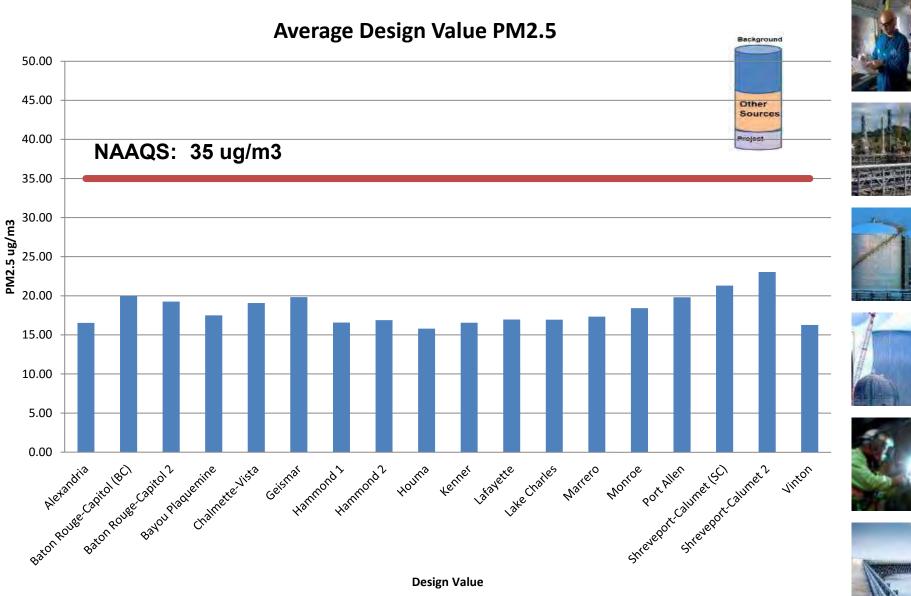
LDEQ


http://www.deq.louisiana.gov/portal/DIVISIONS/Assessment/AirFiel dServices/AmbientAirMonitoringProgram/AmbientAirMonitoringDat aandReports.aspx

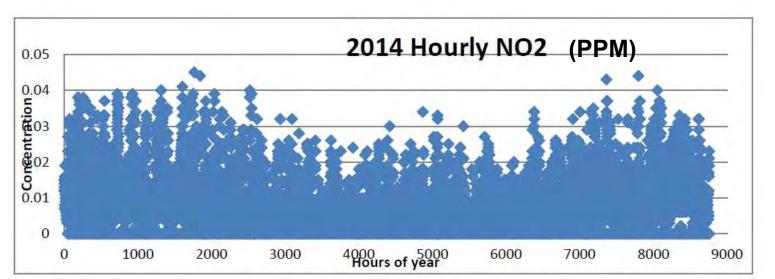

NO_X Monitoring Network

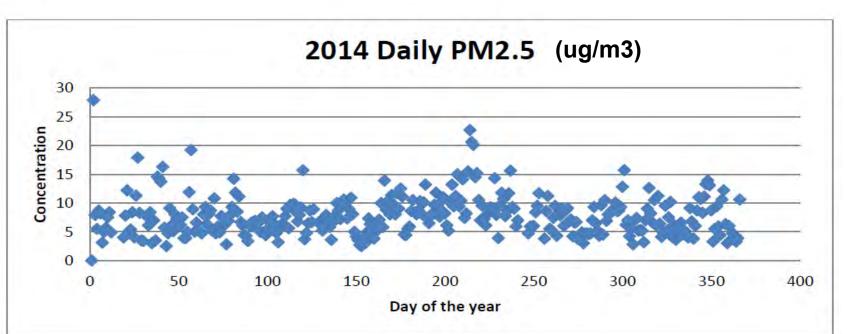
PM_{2.5} Monitoring Network

NO₂ Design Background Values for Monitors in Louisiana



PM2.5 Design Background Values for Monitors in Louisiana





Variability of Hourly and Daily Average Data

Valid Ambient Air Monitoring Data for NSR Permitting

- USEPA provides criteria of "valid data" in 40 CFR 50
 - Appendix N (PM_{2.5}); Appendix S (NO₂); Appendix T (SO₂)

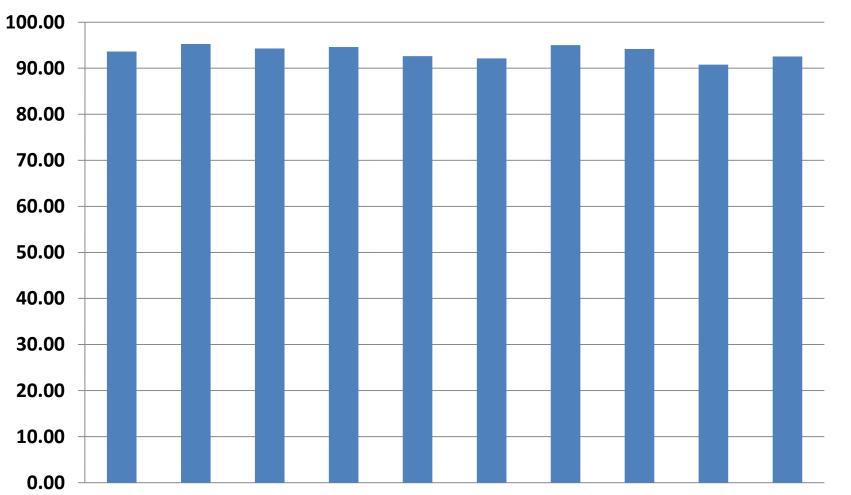
Example

Preferred (1-hour NO2):

 75% daily data capture for each day and 75% data capture for each quarter and all four quarters are complete

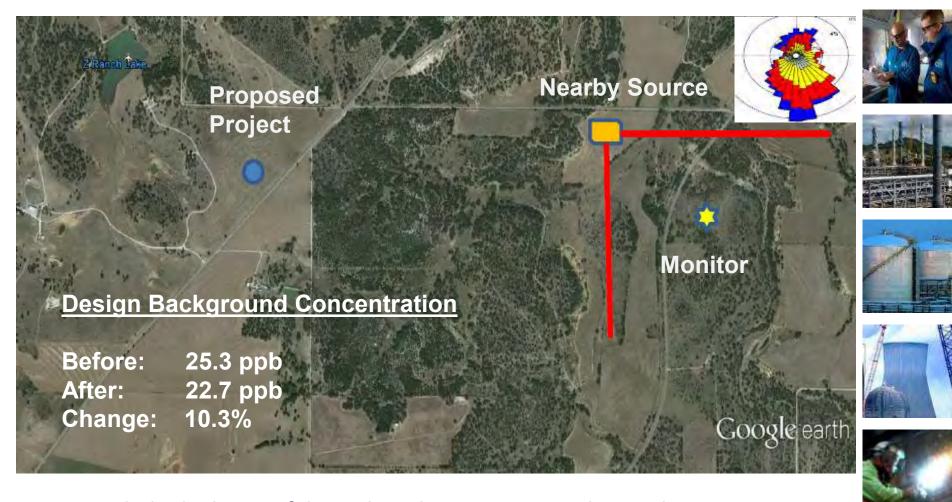
Minimum (1-hour NO2):

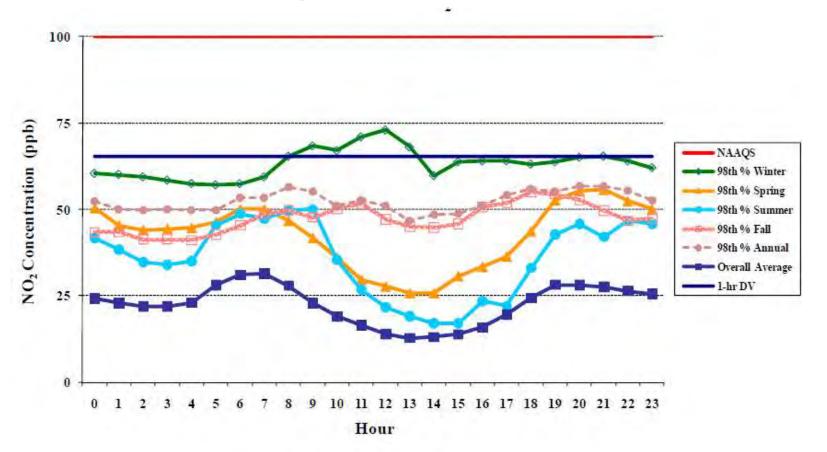
- 50% data capture in any quarter
- Need to conduct a prescribed data substitution tests
 - Highest daily maximum 1-hour value conservative



Data Capture in Louisiana Monitors

Hourly NO₂ Data Capture in Louisiana Monitors CY 2014




Background Concentration Refinement – Option 1

- Exclude the hours of data when the monitor is within 90 degree arc from the source(s)
- Recalculate the design value based on remaining hours of data

Background Concentration Refinement – Option 2

Temporal Pairing of Monitored and Modeled

State-Specific Permitting Issues

State-Specific Permitting Issues

State-Specific Permitting Issues – "Permitting Gumbo"

"Permitting Gumbo" — Ingredients

- Client's Needs/Goals
- Agencies
 - o LDEQ
 - o EPA
 - o LDNR
 - o USACE
 - o LDWF
 - o FAA
 - o Parish/Local Governments
- Environmental Assessment Statement
- Parish/Local Ordinances and Standards
- Wetlands/Coastal Zone/Levee Districts

State-Specific Permitting Issues – "Permitting Gumbo"

"Permitting Gumbo" — Recipe

- Agencies and Client Needs/Goals
 - o Design Elements and Milestones
- Environmental Assessment Statement
 - o Siting, Alternatives, Environmental Considerations
- EPA and LDEO
 - o NAAQS, Emission Standards and Air Modeling
- Parish/Local Ordinances and Standards
- Wetlands/Coastal Zone/Levee Districts
- LDWF
 - Eagle Nests
- FAA
 - o Stack Heights

State-Specific Permitting Issues – "Permitting Gumbo"

"Permitting Gumbo" – Simmer

Ingredients interact to create the flavors

- Impacts of Meeting the Requirements of Various Federal, State and Local Agencies
 - o Location
 - o Stack Heights
 - o Modeling
 - o Emission Standards
- Keep the Pot Stirred
 - o Communication with Client and Agencies
- Serve over Rice
 - Don't Overcook the Rice = Meet that Due Date!

Conclusions

Conclusions

- Evaluate the permitting challenges for short term standards early in the project
- Background monitoring data may be an issue in some locations – Develop strategy for refinement
- Allot significant resources and time for processing data for other sources for cumulative modeling
- State specific issues need to be addressed

Thanks for Your Patience

Contact:
Arijit Pakrasi, Ph.D., P.E.
(281) 531-3106
Arijit.pakrasi@cbi.com

Chris Howard. P.E.

Chris.howard@cbi.com

