Vapor Intrusion Regulatory Drivers and Technical Challenges

Air & Waste Management Association – LA Section October 29, 2007

 $\in N \vee I R \cap N$

Christopher Saranko, Ph.D., DABT ENVIRON International Monroe, Louisiana csaranko@environcorp.com

Presentation Outline

- What is Vapor Intrusion?
- Why is it a hot topic?
- Regulatory setting: Federal / State
- Indoor air pathway assessment: tips and traps
 - Modeling
 - Indoor air sampling
 - Watch out for background
 - Soil gas sampling
- Emerging toxicological issues
- Conclusions / Recommendations

What is Vapor Intrusion?

Upward diffusion from an underlying source

- Intrusion through cracks
- Dilution in building ventilation

 Source could be soil, soil gas, groundwater, or NAPL

Source: ATK Alliant Techsystems, 2003

OSWER Guidance (RCRA, CERCLA & Brownfields) American Petroleum **I DFO** MADEP **J&E Model** RECAP **Institute Guidance MCP** Published in ES&T ASTM RBCA Guidance 298 2000 2002 1991 1993 1995

Why is it a Hot Topic?

Hillside School, MA (Microwave Development Lab Site)

Colorado Sites: CDOT, Redfield, Alliant (Denver Post articles)

Multiple Sites Making News : CA, MA, MI, NB, NY, NJ, PA, others

Redfield Rifle Site, Colorado

- Former optics manufacturer
- Dispelled common myths
 - Slab on grade (few basements)
 - Drinking water levels (not ppm)
 - Deep water table (20-30 ft)
- Solvent plume actually mapped using indoor air sampling
- 1,1-DCE used as unique tracer
 - Outline of 1,1-DCE in GW
 - Initial Study Area

D. Folkes, EnviroGroup Ltd.

Regulatory Setting

Federal:

Draft RCRA Supplemental EI Guidance October 23, 2001 OSWER Guidance of November 2002

Massachusetts:

GW2/S2 Standards promulgated in 1992 Connecticut/Michigan:

Default numeric criteria since 1996/1998, respectively Louisiana:

GW and Soil RSES (Enclosed Structures) since 2000

CA, IL, IN, NH, PA, OR, TX, VA, WV, others?

Increase in number of states recently issuing guidance California:

AB422 (signed 10/15/07) – requires evaluation of VI pathway at all state Superfund and Brownfields sites

2002 OSWER Guidance

Intended to be a "unified" guidance for use by RCRA, CERCLA, Brownfields, and States

Assessment through a series of six questions

- Primary Screening (Questions 1-3):
 - VOCs present? Sufficiently volatile and toxic?
 - Buildings present? (now or in the future)
 - Odors, explosive levels, sickness immediate response

- Secondary Screening (Questions 4-5):

- "look-up" tables for soil gas, groundwater
- "customized" target concentrations

- Site-Specific Assessment (Question 6):

- Field investigations

OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance)

November 2002

EPA530-D-02-004

RECAP 2003

Provides default GW and Soil RS for the "Enclosed Structure" pathway

- Cover non-industrial (residential) and industrial receptors
- RS_{es} Equations based on J&E model
- Site-specific phys/chem adjustments in MO-2
- Some model inputs updated in OSWER guidance after RECAP was released for public comment, therefore not incorporated
 - DEQ will accept some modifications (conditions apply)

Pathway can be assessed through soil gas and/or indoor air sampling

 Occupational standards may be used under MO-3 for industrial sites

GW Standards: States vs OSWER

Groundwater criteria for a residential vapor intrusion scenario

	Benzene	1,1-DCA	TCE
MI	5,600	1,000,000	15,000
OR	180	NA	NA
VA	12	2,260	35
MA	2,000	9,000	300
LA (GW _{esni})	2,900	140,000	10,000
OSWER	140	2,200	5.3

** All concentrations in ug/L

Assessing Vapor Intrusion

- Screening against default soil and groundwater criteria
- Modeling
- Indoor air sampling
 - Background concernsLow target concentrations

Soil gas sampling

- Still need to estimate how much gets into indoor air
- -Alpha factor: empirical vs. modeled

Mathematical Models

J&E Model:

- Steady-state upward diffusion from an underlying source
- Intrusion through a perimeter crack
- Source could be soil, soil gas, groundwater, or NAPL
- Generally conservative but beware of misapplication

Johnson and Ettinger, 1991

Modeling Advancements

Vadose zone biodegradation

Johnson et al. 1999, Abreu and Johnson 2005

- Biodegradation of petroleum hydrocarbons well accepted
 O₂ typically limiting condition
- Need additional data to evaluate/model
- Discussed in API 2005 Guidance
- Can reduce alpha factor by 10- to 1000-fold

Indoor Air Sampling

Indoor Air Sampling

DO NOT sample indoor air as a first step

May ultimately be needed to confirm modeling or soil gas data

Regulatory Agency may initiate its own sampling

- QA/QC should be reviewed in detail
- Collect OAQ data, blanks or lab-replicates
- Conduct a survey of occupants, internal sources
- Clearly identify target compounds

VOCs with Highest Indoor Concentrations

From USEPA BASE study Minimum, maximum, 5, 25, 50, 75, 95th percentiles Girman, J. *Air Toxics Exposure in Indoor Environments,* EPA Workshop on Air Toxics Exposure Assessment, 2002. http://www.epa.gov/osp/regions/airtox.htm

Comparison of Typical Background Concentrations to Risk-Based Levels

Chemical	Range of Bkgrd Concs. (ug/m³)	Risk-Based Concs. (ug/m³)	
Benzene	3 - 5	0.31	С
Chloroform	1 - 4	0.11	C**
1,1 Dichloroethane	<0.08 - 0.2	500	nc
1,2 Dichloroethane	0.04 - 0.09	0.094	С
1,1 Dichloroethene	<0.04 - 0.01	200	nc
Ethylbenzene	3 - 5	2.2	С
Methylene Chloride	0.8 - 10	5.2	С
Tetrachloroethene	1 - 5	0.81	С
Toluene	7 - 20	400	nc
1,1,1-Trichloroethane	0.7 - 50	2200	nc
Trichloroethene	0.1 - 5	0.022	С
Vinyl Chloride	0.01 - 0.02	0.28	С
Xylenes	9 - 15	7000	nc

Risk Based Concentrations from EPA 2002 Vapor Intrusion Guidance Assumed target risk for carcinogens is 1E-6

Background Indoor Air Sources

				'ne			lenzene	Je	hene	hanes	thene	selfe
Source	Benzene	⁷ ollos	Ethyloc	then we	Stree	Trinnethis	Naphthe	Trichic	Irichic	NOON.	Chhi.	$\mathcal{O}_{e_{C_{a}}}$
Latex Paints	Х	Х				Х						
Alkyl Paints										Х	Х	
Carpets	Х	Х			Х	Х						
Glued Carpets	Х	Х			Х	Х					Х	Х
Wood Burning		Х		Х	Х	Х	Х					
Foam Board											Х	
Paint Removers		Х										
Spray Products				Х								
Adhesives/Tapes		Х			Х			Х				Х
Room Deodorants											Х	
Tobacco Smoke	Х	Х	Х	Х	Х							
Gasoline/driving	Х	Х		Х	Х	Х						
Solvents		Х	Х									
Dry Cleaning									Х	Х		

From Herz et al., 2001. The use of indoor air measurements to evaluate intrusion of subsurface VOC vapors into buildings, J. Air & Waste Manage. Assoc. 51:1318-1331.

Background Sources!

(Mickunas, 2004)

Indoor Air Sampling -Instructions to Occupants

48 hours prior to sampling

- No smoking
- No cleaning
- No painting
- No indoor hobbies that use solvents
- No cosmetics use
- No gasoline storage or use

Temporal Variability of Indoor Air Quality

Mean = 204 pptv Coeff. Var. = 40%

How much data is enough?

HCBD (pptv)

Residential vs. Occupational

Chemical	C / NC	Residential IAQ Target at 1E-6 Risk or HQ=1 (ppb)	OSHA PEL TWA (ppb)	ACGIH TLV TWA (ppb)	
1,1,1-Trichloroethane	NC	400	350,000	350,000	
1,1,2-Trichloroethane	С	0.028	10,000	10,000	
1,1-Dichloroethane	NC	120	50,000	100,000	
1,2-Dichloroethene (cis)	NC	8.8 200,000		200,000	
1,2-Dichloroethene (trans)	NC	18	200,000	200,000	
Benzene	С	0.098	10,000	500	
Carbon Tetrachloride	С	0.026	10,000	5,000	
Chloroform	С	0.022		10,000	
Naphthalene	NC/C	0.57	10,000	10,000	
Tetrachloroethene	С	0.12	100,000	25,000	
Toluene	NC	110	200,000	50,000	
Trichloroethene	С	0.0041	100,000	50,000	
Vinyl Chloride	С	0.11	100,000	5,000	

 Occupational standards much more lenient

 EPA will defer to OSHA standards for protection of worker exposure

 LDEQ will consider OSHA standards in MO-3 with certain conditions

Alternatives to Indoor Air Sampling

Soil Gas Sampling

- Still need to determine alpha factor
- Soil gas \times alpha factor

Three options for alpha

- Generic (OSWER Guidance)
- Tracer (e.g., radon)
- Model (J&E, 1991; others)

Soil Gas Sampling

Sub-Slab Soil Gas Sampling

Shroud around probe filled with butane from lighter.

Analyze sample for butane to confirm absence

"Emerging" Toxicological Issues

TCE

- Cancer potency estimate withdrawn in 1989 often still used
- EPA reassessment complete in 2002
 - Several new estimates based on different studies
 - Estimate "selected" by EPA is >60-times more potent (Used in RECAP)
 - Much comment/debate ensued
- NAS review in 2006... final value expected in 2008
- 8 of 10 EPA Regions use new value, several states
- Will be risk driver at many sites

Naphthalene

- Currently considered a non-carcinogen
- Proposed cancer potency estimate
- IAQ target would decrease by 300-fold at a 1E-6 risk level.

Remedial Options

- Active Remediation
- Institutional Controls
- Engineering Controls
 - Radon control system
 - HVAC modifications
 - Sealing
 - Filtration
 - Building design

Mitigation vs. Background

CDPH&E, 2000

Conclusions

- Target concentrations can be very low
 - Similar to background, lower than DLs in some cases
- Conservative screening approaches will require site-specific evaluation in some cases
- Site investigation methods require careful planning
- Assessment can be a challenge

Recommendations

Collect sufficient OAQ data (one is not enough!)

- >90% of indoor air is from outside
- Collect soil gas data
 - identify compounds of potential concern
 - identify ratios of soil gas to IA concentrations (should be similar for most VOCs. If not, suspect background)
- Develop, document and implement rigorous protocols
 there's more bad data out there than most folks realize
- Assess the costs of proactive exposure controls
 IAQ monitoring can get very expensive
- Multiple lines of evidence are best
 IAQ, OAQ, Soil Gas, groundwater data

Thanks for Attending