PROOF OF CONCEPT TEST FOR A REAL-TIME FLARE COMBUSTION EFFICIENCY MONITOR

Air & Waste Management Association Louisiana Section 2013 Fall Conference

Yousheng Zeng, PhD, PE and Jon Morris
Providence Photonics, LLC

Mark Dombrowski
Surface Optics Corporation

October 30, 2013

A BRIEF REVIEW OF THE CONCEPT PRESENTED AT 2012 FALL CONFERENCE

Ref.: Zeng and Morris, "A New Method to Measure Flare Combustion Efficiency in Real-Time", presented at AWMA Louisiana Section 2012 Fall Conference, Baton Rouge, Louisiana, October 30-31, 2012

Flare Combustion Efficiency (CE):

$$CE(\%) = \frac{[C]_{CO2}}{\sum_{i} n_{i}[C]_{HCi} + [C]_{CO2} + [C]_{CO}}$$
 Eq. (1)

Flare CE – Very difficult to measure

Source: TCEQ/UT

THE CONCEPT

- Monitor and map flare CE in real time through a special multi-spectral IR imaging device
- Not a path measurement
- No scanning; high frame rate
- No operator required

We call it "Flare
Efficiency
Monitoring
System" or
"FEMS"

VISION

- Monitor flare CE in real-time
- Image the full flare flame; measure both overall CE and CE at a pixel level (CE mapping)
- Industrial grade device, suitable for integration with PLC or DCS
- One monitor covers multiple flares on site (step and stare)

WORKING PRINCIPLE

PROOF OF CONCEPT TEST

The proof of concept test was partially funded by EPA SBIR Phase I grant.

TEST SETUP

Scale model flare, Flue w/ Sampling Probe, and Analyzers

Distance from the scale model flare to the Imager: 23 ft.

SOC750 Hyper-Spectral Imager

SCALE MODEL FLARE

FLUE AND SAMPLING PROBE

ANALYZERS AND IMAGER

Testo 350 XL (CO2 using NDIR, CO, O2, NOx, H2, Temp, etc.)

3010 Mini FID Calibrated to Propane

SOC750 Hyperspectral imager 42 spectral channels, operated at 22 cubes per sec.

TEST RUNS

PRELIMINARY RESULTS - WITHOUT CALIBRATION

PRELIMINARY RESULTS - WITH AN INITIAL CALIBRATION

PRELIMINARY RESULTS

- Initial Method to Measure Temperature

PRELIMINARY RESULTS - CE MAP

Three Types of Measurement

COMPARISON WITH PFTIR

PFTIR

- "Scanning" >1 sec/scan
 assuming that flare is static during that time
- Path measurement aiming required
- Human operation

FEMS

- Staring 20-30 data cubes/sec – match the flare dynamics
- 2-D mapping of CE no aiming required
- Automatic

CONCLUSION

- The CE determined by the new technology correlate well with the CE measured by conventional analyzers
- With a further developed calibration method, real-time CE monitoring and feedback for flare optimization is feasible
- The new technology can determine CE at a pixel level, generating a CE map for the entire flare flame. No aiming issue.
- As a side benefit, it can also provide temperature mapping of the flare flame

LOOKING FORWARD...

OPTICAL GAS IMAGING WORKSHOP

7:30 am - 4:30 pm

Early registration ends November 15, 2013!

Recent Advancements in Optical Imaging of Gas Leaks and Flare Efficiency Measurement

